
Users Manual

Revindex Storefront 12

This manual and features described are based on the latest software release. Certain features may not be available in
older versions of the software. Please download (http://www.revindex.com/My-Account/My-Downloads) the Users Manual
for older releases.

Last update: 2017-09-20

http://www.revindex.com/My-Account/My-Downloads

Overview
Revindex Storefront is one of the most flexible shopping cart software for the DNN platform. It's powerful enough for large
enterprises supporting thousands of products and millions of orders, yet simple to manage for small businesses.

Start selling in just a few steps! Revindex Storefront complies with industry credit card PCI rules using strong encryption,
secure default settings, SSL support and data validation to protect your customer information.

We support all major payment gateways. If you don't find a suitable payment gateway, please contact us and we'll try to
add it.

Installation
Every Revindex software is designed to be easy to install and backward compatible where possible. Before doing any kind
of installation whether upgrading or installing for the first time, always make sure to:

1. Read the Release notes paying attention to any new requirements or breaking changes.

2. Perform a full backup of your files and database.

3. Start the installation and pay attention to any errors. You should investigate and restore from your backup if you
encounter any error.

4. Test and verify.

Requirements

DNN 8+ (Older version 5.0+, 6.1+, 7.2+ is also available)

Revindex Storefront also supports large Web farm installation (running across multiple servers) allowing you to scale to
millions of customers. Please see Web farm (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/web-farm/rvdwkpvm/section) for more information.

Your hosting provider determines what your Web site can do by enforcing different ASP.NET trust levels (Low,
Medium, High, Full). For example, the default Medium Trust with a restricted WebPermission will not allow your Web
site to communicate with external services such as FedEx. Similarly, a restricted ReflectionPermission will limit your
ability to clone products, handle payment notification, etc.. Fortunately, most shared hosting providers will allow a
modified Medium Trust or higher (with unrestricted ReflectionPermission, WebPermission) and is sufficient for
Revindex Storefront to operate almost fully. We recommend that you ask your hosting provider the trust level and
perform your own testing to determine what functionality is allowed. You can also look at your Host > Host settings
page for the Permissions value to see if ReflectionPermission and WebPermission are allowed.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/web-farm/rvdwkpvm/section

How to install
Make sure to perform a complete backup of your system before starting the installation. Follow the steps outlined below to
install the Trial or production software.

1. Go to Site Host > Extensions.

2. Click on Install Extension Wizard.

3. Upload the Revindex.Dnn.RevindexStorefront.XX.XX.XX.zip package and follow the install wizard instruction. If
you are installing the production software over the existing Trial edition, select "Repair Install" checkbox when
prompted.

If you encounter the “Attempted to access an unloaded AppDomain” message, simply restart your IIS
application pool to notify IIS that new DLLs have changed.

4. Now that you have installed the software on your system, you'll need a new page to host that module. Click Home
first and then, go to Site Pages > Add New Page. Give your page a name (e.g. "Storefront") and save.

Next, click on Site Modules > Add New Module and drag the main Storefront Administration module to
somewhere on the page. We suggest an area on the page that is full width so it can occupy a large area on screen
to make catalog editing easier.

5. Immediately followed, you will be greeted with the installation wizard. Please note it may take several seconds to
reload the first time the Storefront is added to the page as your system needs to load up the necessary files.

The Storefront is composed of multiple module controls that should reside on different pages to enable a rich
shopping cart experience. Click Add selected modules to automatically add the desired module controls to the
recommended pages. You can always rename the pages, move the module controls to other pages or delete the
non-required module controls afterwards. If you prefer to manually add modules later, you can cancel the install
wizard.

After installation, you may need to click on Site Tools > Recycle Application Domain if you encounter any
ASP.NET errors to clear the cache.

Quick start settings
Your shopping cart is pre-configured with default values suitable for most businesses. In most cases, you only need to
configure the Quick Setup Wizard to start selling.

1. Tell us about your business and what features you like to enable?

Configuration > General
Enter your store details. Enable only the advanced features you need.

2. How do you collect taxes?

Configuration > Taxes
Configure any tax rules that you need to collect.

3. How do you collect payment?

Configuration > Payment
Configure the payment methods you want to offer (credit card, PayPal, check, etc.).

4. What are the products you want to sell?

Catalog > Categories
Optionally, define the categories to group your products.

Catalog > Products
Add products to sell. Each product has a default variant where you will set your price, inventory and assign the tax class

you created. You can have multiple variants (e.g. sell a black and brown variation of the same shoe).

License key
If you purchased or received a license for use, you'll need to enter it into the production software. Your license key is made

available to you under your login profile at Revindex (http://www.revindex.com/).

Login as Host and go to the Storefront page you created. Under Configuration > License menu, click Add new and enter

your license key and Save.

http://www.revindex.com/

Activation for Enterprise Edition
The following steps are only required for a site running the Enterprise edition. The Enterprise edition is licensed per
physical Web server and therefore requires activating the license key for your machine hardware. Once you entered your
license key, you will be presented with a button to activate your license. The number of times you can activate is limited,
therefore, you should only active your license in production environment. Test environments should request a separate
license key from Revindex. Click on the Activate license now button to activate your license.

If you have multiple sites on the same physical machine that need to share the same license key, simply copy the
DesktopModules\Revindex.Dnn.RevindexStorefront\RevindexStorefront.lic file to your other sites' matching folder.

You can also use the following Powershell command to quickly bulk copy the license file to the other sites' folders. Simply
replace the destination path "C:\www*" (note: the * will match all sub-folders) and replace the source path
"C:\www\Source" with your actual folder paths.

Get-ChildItem "C:\www*\DesktopModules\Revindex.Dnn.RevindexStorefront" -Directory | ForEach-Object { Copy-
Item -Path "C:\www\Source\DesktopModules\Revindex.Dnn.RevindexStorefront*.lic" -Destination $_.FullName -
Force -ErrorAction SilentlyContinue }

1

2

Common installation errors

If you did not encounter any errors during installation, please skip to next.

It's important to observe and understand the type of errors during installation. Certain errors are informative whereas other
errors may require you to restore from your backup.

1. Error "Maximum request length exceeded" during upload.
See how to avoid timeout (http://www.revindex.com/Support/FrequentlyAskedQuestions/tabid/133/rvdwktid/how-to-
avoid-timeout-when-uploading-software-435/Default.aspx) for more info.

2. Error "Could not load file or assembly 'IKVM... The located assembly's manifest definition does not match
the assembly reference."
If this error occurs only when the page is first loaded immediately after an installation, it is usually caused by IIS
reloading the libraries and there's a temporary mismatch in the cache and is usually safe to ignore. It will clear on its
own by reloading the page.

If, however, the error persists or happens everytime the Web site is restarted, you should investigate if you have
conflicting DLLs (in particular, you should verify if you have the older bin\IKVM.GNU.Classpath.dll file and see if it
can be removed safely. This DLL may have been included from other modules and is considered deprecated since it
has been replaced with IKVM.OpenJDK.*.dll, IKVM.Runtime.dll by the IKVM community and may cause conflicts.)

3. Database installation error or installation failed error message.
If you have database errors during installation, you should take note of the error and attempt to restore from your
backup. Contact technical support for assistance.

4. Error message “Attempted to access an unloaded AppDomain”
Simply restart your IIS application pool to notify IIS that new DLLs have changed.

5. Error on page "DotNetNuke.Services.Exceptions.ModuleLoadException: Index was out of range...". This is
usually caused by the fact you had deleted or not placed the required module controls somewhere on a page. The
required module controls must exists on a page and it could be a hidden page if you don't want it to appear on the
menu. See Adding module controls (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/adding-module-controls/rvdwkpvm/section) for more info.

6. Error on page "Cannot find or load template". Make sure your configuration, products, catalogs are referencing
a display template that exists. Older base display templates may be deleted with new versions of the software. If
you're using custom display templates, you also want to check for syntax error and ensure you base display

http://www.revindex.com/Support/FrequentlyAskedQuestions/tabid/133/rvdwktid/how-to-avoid-timeout-when-uploading-software-435/Default.aspx
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/adding-module-controls/rvdwkpvm/section

template still exists. See Display Templates (http://www.revindex.com/Resources/Knowledge-Base/Revindex-

Storefront/display-templates/rvdwkpvm/section) for more info.

7. Network error accessing REST API resources with 405 Method Not Allowed returned. Your IIS has an older
configuration that is disallowing certain common REST API operations from working. For example, you might notice
this error when you try to perform a delete or remove operation such as deleting a product item from the shopping
cart. To remedy this problem, simply adjust the settings in your IIS Web site:

1. Under the Handler Mappings settings, make sure the mappings that begin with ExtensionlessUrl* allow
DELETE, GET, HEAD, POST, DEBUG, PUT verbs.

2. Under the Handler Mappings settings, remove WebDAV if present.

3. Under the Modules settings, remove WebDAV if present.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/display-templates/rvdwkpvm/section

Adding module controls
After the initial installation, you may decide to add module controls to other pages. You can follow the usual way of adding
modules from the site Modules > Add New Module panel. If you prefer, you can also bulk add multiple modules quickly by
going to the Configuration > Installer page.

1. Go to Configuration > Installer.

2. Select the desired modules. You may edit the target page as needed. Finally, click on Add selected modules to
bulk add modules.

Below is the list of recommended pages and where each module control should normally reside for your reference. As you

become familiar with the application, feel free to rename the pages and rearrange the module controls to different pages on your

site. Many of these modules are optional providing useful enhancements to your site and can be removed if not needed. SSL is

not a requirement on any pages, but is recommended if you accept credit card directly on your site. Having SSL can help

increase customer confidence shopping at your store.

Suggested Page Name Required
Show
in
Menu

Permission SSL Module Control

Home
Primary page.

No Yes All Users No

Product Search (optional)
Search for products.

Product Showcase (optional)
Display featured products.

Storefront
Main console page to administer
store, orders, users, etc.

Yes Yes Administrators Yes
Storefront
Main console to administer
store, orders, users, etc.

Checkout
Payment processing page.

Yes No All Users Yes
Checkout
Payment processing.

Cart
Shopping cart page.

Yes Yes All Users Yes
Cart
Shopping cart.

Confirmation
Confirmation page after a
successful checkout.

Yes No All Users Yes
Confirmation
Confirmation page after a
successful checkout.

Product
Product detail view page.

Yes No All Users No

Product Detail
Product detail view.

Category (optional)
Display product categories.

Distributor (optional)
Display distributors.

Manufacturer (optional)
Display manufacturers.

Cart Summary (optional)
Quick display of items in cart.

Products
Product list view page.

Yes Any All Users No

Product List
Product list view.

Product Filter (optional)
Filter products in the product list
view.

Category (optional)
Display product categories.

Cart Summary (optional)
Quick display of items in cart.

Distributor (optional)
Display distributors.

Manufacturer (optional)
Display manufacturers.

Product Search (optional)
Search for products.

Product Comparison
Allow comparing products in a
grid.

No No All Users No
Product Comparison
(optional)
Product comparison view.

My Account
Allow users to manage order,
address book, payments, etc.

No Yes
Registered
Users

Yes

Manage Address (optional)
Allow users to manage address
book.

Manage Order (optional)
Allow users to manage
purchased orders.

Manage Recurring
Order (optional)
Allow users to manage any
recurring orders.

Manage Payment (optional)
Allow users to manage
payments.

Manage Product
Download (optional)
Allow users to download virtual
goods.

Manage Rewards
Point (optional)
Allow users to manage their
rewards points.

Manage Right (optional)
Allow users to view their access
rights (license, serial,
password).

Manage Voucher (optional)
Allow users to manage their
vouchers.

Manage Wish List (optional)
Allow users to manage their
wish lists.

Wish List
Allow users to search public wish
list, gift registry.

No Yes All Users No
Wish List (optional)
Allow users to search public
wish list & registry.

Quick Order
Allow users to quickly bulk order
products.

No Yes All Users No

Quick Order (optional)
Allow users to quickly bulk order
products (e.g. wholesaler for
automobile parts)

How module controls interact
Below is a typical use case how customers interact with the different module controls. Every customer has a different
buying habit. Revindex Storefront is streamlined to help make the shopping experience easier and faster. It could take as
little as 2 submit clicks to complete a checkout process from Home page to Confirmation page.

The Storefront is composed of multiple module controls hosted on separate pages giving you the flexibility to customize
the look and feel, functionality and security at each step of the process. For example, you may want to add Web analytics
tracking on to each page to measure sales conversion to see where your customers abandon or perhaps you like to place
advertisement on certain pages to up-sell services. Another example is you may want use the module controls individually
to promote featured products on a completely separate page from the rest of your shopping cart.

You are free to mix and match the different module controls together as long as you have the required core module
controls hosted on pages somewhere on your site. You are encouraged to rename and organize the pages and module
controls to make your site friendlier.

How to move modules
You can move modules to other pages by following the steps below:

1. Click on Settings from your module's Manage action menu.

2. Under Page Settings tab, expand the Advanced Settings panel.

3. Choose the page to move the module to under the Move To Page dropdown option.

How to SSL secure your pages
In order to secure your pages when transmitting customer information over the internet (e.g. checkout, cart, registration,
login pages, etc.), you need to enable SSL on your site (also known as HTTPS protocol).

You must first have a valid SSL certificate for your site and have it installed on your IIS server by your administrator. Follow
the remaining steps to configure SSL on your DotNetNuke web site:

1. Login as Host user.

2. Go to Admin > Site Settings page.

3. Under the Advanced Settings tab, expand the SSL Settings panel.

4. Check the SSL Enabled checkbox.

5. Check the SSL Enforced checkbox. When this option is set, pages which are not marked as Secure will not be
accessible with SSL (HTTPS).

6. Optionally enter a SSL URL only if you do not have a dedicated SSL Certificate installed for your site. An example
would be a shared hosting account where the hosting company provides you with a shared SSL URL.

7. Optionally enter the Standard URL. If an SSL URL is specified above, you will also need to specify a Standard URL
for unsecure connections.

8. Save your changes.

You will now need to indicate which pages need to be SSL secured. Typically, this should be any pages where sensitive
customer information may be transmitted over the Internet such as Login, Registration, Cart, Checkout, Confirmation and
Account pages.

1. For each page needing to be SSL secured, go to its Page Settings. Under the Advanced Settings tab, expand the
Other Settings panel and mark the Secure checkbox.

2. Save your changes.

How to improve performance
Performance is dependent on several factors such as hardware, network speed, server load, etc. There are several things
you can do on the software side to improve performance:

Ensure you are running .NET 4.5+ framework.

Ensure you are running the latest version of Revindex Storefront running the newest display templates. Newer
releases often have significant performance enhancements.

Enable IIS or DotNetNuke compression.This will significantly improve download time.

Install Revindex Optimizer (http://www.revindex.com/ProductDetail/tabid/138/rvdsfpid/revindex-optimizer-1-0-
9/Default.aspx) to speed up page loading time by up to 50%.

Remove any unnecessary module controls on your page (side banner, footer, etc.).

Set your DotNetNuke Cache Settings to "Heavy" under Host > Host Settings page. Please note caching takes
effect and builds up speed after the first page visit.

Make use of content delivery network (CDN) to host your common client scripts under Host > Host Settings page.

Make use of Client Resource Management composition and minify files under Host > Host Settings page.

Make sure to Enable Event Log Buffer under Host > Host Settings page to avoid writing to disk everytime a log is
generated.

Uncheck the Auto-Sync File System under Host > Host Settings page if you don't use FTP to avoid querying the
disk for new files.

Reduce the high frequency runs of unimportant jobs under Host > Schedule page. For example, you don't always
need to index your search every minute and can increase to 15 minutes.

Uninstall extensions that you don't use under Host > Extensions page to reduce memory consumption.

Ensure your hosting does not place a limit your application pool's memory or CPU usage.

If you have a low traffic site, ensure your site is up and running using a keep-alive service to ping your site every 15
minutes. If your site idles too long, your hosting provider or IIS may shut down the process causing the first visit to
take a long time to start up again.

In terms of hardware changes:

Ensure you have lots of free memory on the server so that your OS is not swapping to disk and the Web server is
able to cache as much data as possible.

Ideally, ensure the system can cache all your products to memory. You can roughly calculate how much memory is
needed for simple products = Avg. DB row size X Number of products X 10 factor. The factor of 10 will increase
quickly if your product is complex and have many variants and attributes, so please test accordingly. For example, if
your database product table uses about 1 KB of storage per row and you have 10,000 products, you can approximate
a memory consumption of 100 MB just for caching products. To find the row size, you can simply view your table
properties and look for the table storage size and divide by the number of rows in that table.

http://www.revindex.com/ProductDetail/tabid/138/rvdsfpid/revindex-optimizer-1-0-9/Default.aspx

Get faster hard drives for your database and file server. It's about the number of IO per second and not about storage
size (SSD or 10K/15K rpm hard drives in RAID are recommended).

Get a very fast CPU for your Web server especially if you intend to use a lot of dynamic rules and promotions.

Revindex Storefront supports Web farm configuration allowing you to spread the load over multiple Web servers.

Ensure you have a fast ethernet connection between your Web server and database server if they're on separate
machines (1 Gbps or higher is recommended).

Ensure you have a fast public network (100 Mbps or more).

How you configure your Storefront will also determine the general performance of your shop:

Group your products using multiple categories and sub-categories to avoid displaying too many products on a single
page. It's generally ineffective to list thousands of products on one category even with paging enabled, when the
average customer never navigates past the 2nd page. Most major shopping sites use this approach to speed up
performance. For example, a good way is to mark a limited number of products as Featured products, therefore,
showing only the subset of products when no category is being selected instead of showing all products. Likewise,
sub-category is a great way to force customers to quickly narrow down to what they're looking for instead of paging
through hundreds of pages. In general, aim for no more than a hundred products per category.

Avoid creating unnecessary product variants when you can create product options with custom fields. Product
variants are generally used when you need to track distinct inventory and SKU for each product option.

Limit the use of product filter for only important attributes. Balance between speed and ease of navigation for your
customers. Product filter is generally an intensive operation. Learn to take advantage of other forms of navigation
filters like product search, category, manufacturer, distributor, etc.

Reduce the number of unnecessary modules on your page that can clutter and slow down the page rendering.

Set a small but reasonable limit on the number of results to show under Configuration > Product List and
Configuration > Product Search settings. Study shows 80% of customers don't navigate past the 2nd page (e.g.
100 is a good limit). Rather than setting a high limit and expect the customer to click through 20 pages of products,
you should emphasize the use of the product search module instead.

Disable natural sort under Configuration > Product list settings. The natural sort algorithm is an expensive
operation.

Make sure your Log Level is set to "Error" mode under Configuration > General settings so that you're not logging
unnecessary debug information.

How to upgrade
We made sure upgrading is as painless as possible. Normally, it entails uploading the software and follow through the
wizard and entering the new license key, if any. Revindex Storefront will automatically detect the running version and
perform the necessary upgrade retaining your settings. However, we would like to share some best practices you should
follow.

1. If you're upgrading to a new major version (e.g. upgrade from version 7.1 to 8.0), verify that your license key is valid
for the new version. Contact Revindex sales if you have any questions about your license key.

2. Read the Release notes (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/release-
notes/rvdwkpvm/section) for any requirement or breaking changes introduced in the new version of the software. In
particular, you should pay attention to the following points before upgrading:

Any obsolete base display templates that have been removed from the new software, usually base display
templates older than 1 year. The older the base template, the smaller the version number (e.g. Standard1,
Standard2). Any custom display templates (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/display-templates/rvdwkpvm/section) using these very old base display templates will need to be
recreated or merged to a higher base version. Please see How to upgrade display templates
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-upgrade-display-
templates/rvdwkpvm/section) for more information.

Any CSS style and class name changes if you're customizing the look-and-feel by overriding the style classes
that are included with the Storefront.

If you're using the Revindex Storefront API, make sure you test the upgrade on a development machine first
before upgrading the production site to ensure your API calls work correctly.

3. Take a complete backup of your system.

4. Go to Site Host > Extensions.

5. Click on Install Extension Wizard.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/release-notes/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/display-templates/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-upgrade-display-templates/rvdwkpvm/section

6. Upload the Revindex.Dnn.RevindexStorefront.XX.XX.XX.zip package and follow the install wizard instruction. If
you are installing the production software over the existing Trial edition, select "Repair Install" checkbox when
prompted.

If you encounter the “Attempted to access an unloaded AppDomain” message, simply restart your IIS
application pool to notify IIS that new DLLs have changed.

7. If Revindex issued you a new license key, make sure to delete the old license key and enter the new one. Please
see License key (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/license-
key/rvdwkpvm/section) for more information.

8. Perform spot tests and verify any customizations you previously made continue to work.

For more information, please read the How to upgrade a DNN module or the importance of backing up
(http://www.dnnsoftware.com/community-blog/cid/134807/how-to-upgrade-a-dnn-module-or-the-importance-of-backing-
up) blog.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/license-key/rvdwkpvm/section
http://www.dnnsoftware.com/community-blog/cid/134807/how-to-upgrade-a-dnn-module-or-the-importance-of-backing-up

If you're running tests on a development/staging machine with production data copied over and you sell recurring
products, make sure to disable any recurring orders or change the payment gateway credentials, otherwise it will
automatically charge your customer's credit card when the order is due for renewal.

How to install DNN on local machine

1. Unzip DNN_Platform_x.x.x.zip to c:\DNN_Platform_x.x.x folder.

2. Create new database called DNN_test with MSQLSMS.

3. Add Application Pool called DNN_test with IIS Manager and under Advanced Settings, change the Application
Pool Identity to custom account for DNN_test. You'll be prompted for your Credentials (your Window's user and
password).

4. Under Sites > Default Web Site, add Application called DNN_test.

5. Change file permission on previously installed DNN_Platform_x.x.x folder.

6. At http://localhost/DNN_test/, enter the host and password (e.g. host, dnnhost) and point to relevant local test SQL.

Web farm

This is an advanced topic for businesses running multiple servers. You can skip this topic if you're running a single
machine.

Revindex Storefront supports large Web farm installation (running across multiple Web servers) allowing you to scale to
millions of customers. Web farm is a complex setup and should only be configured by experienced administrators with
strong understanding of network, IIS, ASP.NET and DNN. Improper configuration of Web farm will result in instability of
your system.

A common form of Web farm setup involves directing the user to a random or weighted Web server for each incoming Web
request. Therefore, you need to ensure every Web server is capable of accessing the session information of the user,
otherwise the user may see inconsistent data navigating from one page to another.

By default, as of version 6.3.1, the Storefront uses ASP.NET session to store state information (in older versions, the
Storefront uses DNN data cache object). This means your Web farm needs to be configured to use State Server or SQL

Server mode (http://msdn.microsoft.com/en-us/library/vstudio/ms178586(v=vs.100).aspx) to preserve session across machines.
Other equivalent variation of this concept that allows sharing of session information out-of-process may also work (e.g.
Windows Azure has several equivalent implementations of session storage modes (https://www.simple-
talk.com/cloud/platform-as-a-service/managing-session-state-in-windows-azure-what-are-the-options/) such as
TableStorage, SQL Azure, Windows Azure Caching, etc. as well as other 3rd party session providers like NCache, etc.).

If you're unable to change your session provider, you can try to shift the session responsibility from ASP.NET to DNN by
configuring the Storefront to persist session information to DNN's data cache object. In this case, you will also need to
ensure your DNN cache mode is using an out-of-process caching provider (e.g. AppFabric, NCache, Memcached, etc.). To
configure the Storefront to use DNN data cache object, you need to add the key to your Web.config's appSettings section
(please note that every Web server must be configured the same way):

<add key="SessionProvider" value="dnncache" />

Finally, if you're unable to employ any of the session storage modes above, you can configure your load balancer to direct
all incoming requests from the same source IP address to the same Web server. This sticky IP routing approach alleviates
any need to share session since it essentially operates as one Web server from the user standpoint.

http://msdn.microsoft.com/en-us/library/vstudio/ms178586(v=vs.100).aspx
https://www.simple-talk.com/cloud/platform-as-a-service/managing-session-state-in-windows-azure-what-are-the-options/

How to uninstall
Make sure to perform a complete backup of your system before performing the following steps.

1. Go to Host > Extensions and uninstall all "Storefront" modules. It's recommended to keep files on the system by
leaving the "Delete Files" checkbox unchecked.

To quickly uninstall all Storefront modules, you can go to the Storefront Configuration > Installer menu. Then
append the special query string "?Uninstall=1" to the URL and hit Enter on your browser. You will then be presented
with a button to Uninstall Revindex Storefront. Click on it to uninstall all modules at once.

2. Go to Host > Schedule and remove "RevindexStorefront.*" scheduler item.

3. It's not necessary to delete module files. Leaving module files on the system will not consume memory or CPU when
unused. Deleting library files may affect other modules that rely on any shared assemblies. The following files may
be deleted if absolutely necessary:

bin\Revindex.*.dll
DesktopModules\Revindex.Dnn.RevindexStorefront*

How to re-install with data
Under normal circumstances, you should never need to re-install Revindex Storefront from scratch unless your
DotNetNuke system is corrupted beyond repair and needs to be re-installed cleanly. The following step is a rough guideline
to try to retain the data if you come to the point where you need to re-install.

Make sure to perform a complete backup of your system before performing the following steps.

1. Take a full backup of your files and database.

2. Create a copy of your database. Give your temporary database a name such as "Temp1". Please see this topic
(http://technet.microsoft.com/en-us/library/ms188664.aspx) for more information on copying your database.

3. From SQL Server Management Studio, delete all Revindex_Storefront_* tables from your temporary database.

4. Export the data to your temporary database using SQL Server Management Studio:
i. Right mouse on your live database and click Tasks > Export Data.

ii. Follow the wizard and select live database you are exporting the data

from.

iii. Select the temporary database you are exporting the data to.

iv. Select "Copy data from one or more tables or views".

v. Select all the Revindex_Storefront_* tables.

vi. Click Finish.

5. From your DotNetNuke Host > Extensions page, uninstall Revindex Storefront and select Delete files checkbox.

6. Install a new instance Revindex Storefront with the same version as the previous Revindex Storefront. If you're re-

installing DotNetNuke, make sure your portal ID number is also the same.

7. To restore your data, use SQL Server Management Studio:
i. Right mouse on your live database and click Tasks > Import Data.

ii. Follow the wizard and select the temporary database (e.g. "Temp1") that you will be importing the data
from.

iii. Select your live database where you will be importing the data to.

iv. Select "Copy data from one or more tables or views".

v. Select all the Revindex_Storefront_* tables.

vi. On each selected table, click on Edit Mapping and select Delete rows in destination table
checkbox and select the Enable identity insert checkbox. Look for any column with the type "timestamp"

http://technet.microsoft.com/en-us/library/ms188664.aspx

and mark its Destination as "<ignore>".

vii. Click Finish.

8. To restore any template customizations, copy all the files from your backup under
\DesktopModules\Revindex.Dnn.RevindexStorefront\Portals\X where X is your portal ID number to the same
respective folder location on your live site. Also copy all files from
\DesktopModules\Revindex.Dnn.RevindexStorefront\App_LocalResources to the same respective folder on
your live site to restore any static localization text changes you may have made.

How to migrate product data
If you run multiple environments such as a test and a production environment, you can follow the suggested approach to
copy your product data from production (source) to your test (target) environment. Please note, it is not recommended to
copy data from test to production environment.

Please ensure to take full backup first before starting the migration. This is an advanced topic and should only be
performed by an experienced administrator who has strong understanding of DNN, SQL database and Revindex
Storefront. The information provided here is to be used at your own risk without any warranty or support.

The following assumptions are required to successfully refresh the product data:

Both environments operate the same software version

Both environments have the same number of portals and Portal ID numbers.

You don't require retaining sales orders, product reviews, voucher history data in the target database.

You are not interested to refresh the Users data.

In order to refresh the product tables, the general idea is to delete the data at the target database first followed by inserting
back from the source database. Because many adjacent tables rely on the data from these tables that are being refreshed,
we also need to delete the data from the adjacent tables to maintain integrity. For example, we need to delete the data
from the Revindex_Storefront_ProductReview, Revindex_Storefront_SalesOrderDetail, etc.

Using SQL Server Management Studio:

1. Execute the following SQL statements to delete data in your target database:

DELETE FROM [dbo].[Revindex_Storefront_Right]
DELETE FROM [dbo].[Revindex_Storefront_ProductChannel]
DELETE FROM [dbo].[Revindex_Storefront_CrosssellProduct]
DELETE FROM [dbo].[Revindex_Storefront_AddressValidationMethod]
DELETE FROM [dbo].[Revindex_Storefront_RewardsPointHistory]
DELETE FROM [dbo].[Revindex_Storefront_RewardsPoint]
DELETE FROM [dbo].[Revindex_Storefront_ProductVariantOption]
DELETE FROM [dbo].[Revindex_Storefront_ProductVariantGroupOption]
DELETE FROM [dbo].[Revindex_Storefront_ProductVariantGroup]
DELETE FROM [dbo].[Revindex_Storefront_VoucherHistory]
DELETE FROM [dbo].[Revindex_Storefront_Voucher]
DELETE FROM [dbo].[Revindex_Storefront_WishListDetail]
DELETE FROM [dbo].[Revindex_Storefront_ProductAttribute]
DELETE FROM [dbo].[Revindex_Storefront_ProductAttributeDefinitionSelection]
DELETE FROM [dbo].[Revindex_Storefront_ProductAttributeDefinition]
DELETE FROM [dbo].[Revindex_Storefront_ProductAttributeGroup]
DELETE FROM [dbo].[Revindex_Storefront_Gallery]
DELETE FROM [dbo].[Revindex_Storefront_RelatedProduct]

DELETE FROM [dbo].[Revindex_Storefront_RequiredProduct]
DELETE FROM [dbo].[Revindex_Storefront_SalesOrderDetail]
DELETE FROM [dbo].[Revindex_Storefront_RecurringSalesOrder]
DELETE FROM [dbo].[Revindex_Storefront_ProductCategory]
DELETE FROM [dbo].[Revindex_Storefront_ProductReview]
DELETE FROM [dbo].[Revindex_Storefront_ProductPart]
DELETE FROM [dbo].[Revindex_Storefront_ProductComponent]
DELETE FROM [dbo].[Revindex_Storefront_ProductVariant]
DELETE FROM [dbo].[Revindex_Storefront_RightDefinition]
DELETE FROM [dbo].[Revindex_Storefront_VoucherDefinition]
DELETE FROM [dbo].[Revindex_Storefront_Product]
DELETE FROM [dbo].[Revindex_Storefront_SalesPayment]
DELETE FROM [dbo].[Revindex_Storefront_Category]
DELETE FROM [dbo].[Revindex_Storefront_Distributor]
DELETE FROM [dbo].[Revindex_Storefront_Manufacturer]
DELETE FROM [dbo].[Revindex_Storefront_SalesOrder]
DELETE FROM [dbo].[Revindex_Storefront_WishList]
DELETE FROM [dbo].[Revindex_Storefront_TaxClass]
DELETE FROM [dbo].[Revindex_Storefront_TaxProvider]
DELETE FROM [dbo].[Revindex_Storefront_Seller]

2. Open a new query and execute the following SQL statement to disable all constraints at your target database.

EXEC sp_msforeachtable 'ALTER TABLE ? NOCHECK CONSTRAINT all'

3. Right mouse on your source database and click Tasks > Export Data

4. Follow the wizard and select source database you are exporting the data from.

5. Select the target database you are exporting the data to.

6. Select "Copy data from one or more tables or views".

7. Select all these tables:

Revindex_Storefront_Category
Revindex_Storefront_CrosssellProduct
Revindex_Storefront_Distributor
Revindex_Storefront_Gallery
Revindex_Storefront_Manufacturer
Revindex_Storefront_ProductXXX (all ProductXXX tables except Revindex_Storefront_ProductReview)
Revindex_Storefront_RelatedProduct
Revindex_Storefront_RequiredProduct
Revindex_Storefront_RightDefinition
Revindex_Storefront_Seller
Revindex_Storefront_TaxClass
Revindex_Storefront_TaxProvider

Revindex_Storefront_VoucherDefinition
Revindex_Storefront_Warehouse

8. On each selected table, click on Edit Mapping and select the following:

+ Enable identity insert
+ Append rows to the destination table
+ Look for columns of type "timestamp" (e.g. RowVersion column) and set the Destination to <ignore>

Note: You can use the CTRL or SHIFT keyboard to select multiple tables and make edits to all of the selected tables
at once.

9. Click Finish.

10. Open a new query and execute the following SQL statement to re-enable all constraints at your target database.

EXEC sp_msforeachtable 'ALTER TABLE ? CHECK CONSTRAINT all'

11. Execute the following statement to check the database integrity at your target database. If any data integrity failures
are reported, you should rollback to your backup database and retry.

DBCC CHECKCONSTRAINTS WITH ALL_CONSTRAINTS

12. Copy over all the files from your folder \DesktopModules\Revindex.Dnn.RevindexStorefront\Portals\X to the
other server respectively where X is your portal number.

13. Test your data

If you're running tests on a development/staging machine with production data copied over and you sell recurring
products, make sure to disable any recurring orders or change the payment gateway credentials, otherwise it will
automatically charge your customer's credit card when the order is due for renewal.

Administration
The administration section is used to configure your store, define the products you sell as well as manage
orders. The Storefront page you created hosts the main RevindexStorefront administration module control where you can

perform configuration changes, manage products and orders.

Configuration

General
Start by configuring your basic store information under Configuration > General such as your store name, email, address,
units of measure, etc. This information will be used by various functions of your Storefront such as calculating shipping
cost based on your store address or sending email receipt to the customer.

The Storefront comes with many advanced features that are disabled by default such as API, cross-sell, handling, packing,
fraud score, address validation, etc. You may want to explore and enable some of these features once you have
familiarized with the basic workings of the software.

Currencies
Revindex Storefront supports every known currency in the world. You can display prices and amounts in the currency of
the user selected culture. For example, a customer viewing your site in English United States will see USD $, whereas a
customer from English Canada will see CAD $, and a customer from France will see the Euro € , etc.. Currency conversion
is performed using an exchange rate table from the Configuration > Currencies menu. If the exchange rate is not
provided for a culture, the Storefront will automatically fall back to the primary currency.

It’s important to note that the Storefront internally stores and calculates all the amounts in the primary currency. Actual
money is also transacted with your payment gateway in the primary currency. Any non-primary currency is merely
converted from the primary currency multiplied by its respective exchange rate for display on screen. Therefore, it’s
extremely important to ensure you pick the correct primary currency for your business from the start.

In reality, currency exchange rate varies throughout the day. The converted value displayed to the customer is only an
approximation of the actual amount based on the exchange rate provided. In the case of credit card charges, the actual
amount charged to the customer is based on the exchange rate charged by the bank at the moment of settlement and may
be different than the exchange rate you provided in the table.

You can enable the Auto update feature to automatically update the exchange rates periodically using one of the
supported currency providers (Yahoo Finance, European Central Bank, etc.). By default, the currency scheduler runs daily
under the Host > Schedule page. Each provider may return a slightly different rate based on where they source and how
frequently they update their own internal rates. Please verify if the selected provider supports your currency and the
accuracy of the rate returned.

Payment
The Storefront supports many different payment methods such as cash, check, credit card, debit card, money order,
PayPal and wire transfer payment methods. By default, most payment methods are disabled. Select the payment methods
to allow from the Configuration > Payment menu. You must enable at least one payment method.

None payment method
The None is a special payment method that allows a user to bypass payment and is useful for allowing a customer to
checkout zero dollar amounts such as free trials. It should normally be used with an availability rule to allow it only when
the balance amount due is zero.

Credit card payment method
If you simply want to capture credit card information and perform manual transaction later (e.g. using a virtual terminal), set
the Credit card payment gateway to "Manual".

Payment processor
If you're using a 3rd party payment processor, you also need to enter the credentials for the desired payment method. For
example, if your credit card payment gateway is Authorize.NET, you need to set the Authorize.Net gateway credentials.
Similarly, if you enable the PayPal payment method, you need to set the PayPal Express Checkout or PayPal Website
Payments Standard credentials. Click on the edit icon to enter your payment gateway credentials. Please see Gateways
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/payment-gateways/rvdwkpvm/section) for
more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/payment-gateways/rvdwkpvm/section

Gateways
In order to accept credit card and other advanced payment types like PayPal, you will need to open a merchant account
with a payment gateway provider (Authorize.net, Elavon, PayPal, etc.). A payment gateway provides a secure connection
to communicate payment information between the customer’s financial account and your bank account.

You will need to enter the account credentials given by your payment gateway provider into the Storefront under
Configuration > Payment. For the type of payment method (credit card, PayPal, etc.), click on the edit icon to enter your
payment gateway credentials.

Test mode
Only enable Test mode if your gateway provided you with a separate test account. The test account is usually different from your

production account. Under test mode, the system will attempt to transact with the gateway's sandbox server and results will often

vary depending on the amount, credit card number and expiry being used in order to simulate different approval and denial

errors. Please consult your payment gateway’s technical documentation for running in test mode.

Instead, it is recommended that you perform your tests in production mode. Most payment gateways will waive the
transaction fee if you refunded a transaction before the funds have settled. Please contact your payment gateway for more
information.

Currency
Most payment gateways accept only a single currency (e.g. USD) and are usually predetermined in your merchant account
during registration. If a payment gateway accepts multiple currencies, the Storefront will attempt to transmit your primary
currency information to the payment gateway. Always ensure that your payment gateway can support your primary
currency for your merchant account.

Recurring payment

Automatic payment collection for a recurring order is supported for certain payment gateways (e.g. Authorize.Net AIM,
Authorize.Net CIM, Paymentech, Elavon, PayPal Express Checkout, PayPal Website Payments Pro, Sage Pay Direct,
etc.). Generally, you cannot automatically collect recurring payments where the checkout process requires manual
intervention from the customer such as paying by check, cash, money order, etc.. The recurring order will still get created
and you can always collect the money separately by invoicing your customer or use the virtual terminal provided by your
payment gateway. You may also use the virtual terminal of your payment gateway to schedule the recurring collection of
payment outside of the Storefront, if available. Please see the information on individual payment gateways to determine if it
supports recurring payments.

Please contact us if you don't see the payment gateway you like to use.

Authorize.Net AIM
Authorize.Net (http://reseller.authorize.net/application/?resellerId=28871) Advanced Integration Method (AIM) is a direct
payment gateway that allows you to accept credit card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Login – Your API Login that uniquely identifies your account.

2. TranKey – Your API transaction key.

Leave the Gateway URL blank unless if you're using a different payment gateway that is emulating Authorize.Net
compatible API.

http://reseller.authorize.net/application/?resellerId=28871

Authorize.Net CIM
Authorize.Net (http://reseller.authorize.net/application/?resellerId=28871) Customer Information Manager (CIM) is a payment

profile gateway that allows you to accept credit card transactions, bank payments, etc.. It uses a hosted payment page on

Authorize.Net Web site for both one-time purchase and recurring payment (no credit card information passes through your site)

thereby simplifying your PCI requirements.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

Purchase using gateway hosted page

The following fields are required:

1. Login – Your API Login that uniquely identifies your account.

2. TranKey – Your API transaction key.

Since Authorize.Net CIM uses pop-up to display payment profile, please ensure you also have enabled pop-up under your
DNN Admin > Site Settings page.

http://reseller.authorize.net/application/?resellerId=28871

Authorize.Net SIM
Authorize.Net (http://reseller.authorize.net/application/?resellerId=28871) Simple Integration Method (SIM) is a payment

wallet gateway that allows you to accept credit card transactions, bank payments, etc. using a hosted payment page on

Authorize.Net Web site.

This gateway supports the following features:

Purchase using gateway hosted page

Payment notification

The following fields are required:

1. Login – Your API Login that uniquely identifies your account.

2. TranKey – Your API transaction key.

3. MD5 Hash - Your secret MD5 hash value configured in your merchant account's security settings used to verify the
response received from Authorize.Net.

Do not configure any Relay Response URLs in the merchant account settings otherwise the Storefront may not be able to
complete the URL response relay needed to confirm payment.

Leave the Gateway URL blank unless if you're using a different payment gateway that is emulating Authorize.Net
compatible API.

http://reseller.authorize.net/application/?resellerId=28871

BluePay
BluePay (http://www.bluepay.com) is a direct payment gateway that allows you to accept credit card transactions within
your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Account ID – Your API account.

2. Secret Key

http://www.bluepay.com/

CashFlows Remote API
CashFlows (http://www.cashflows.com) Remote API is a direct payment gateway that allows you to accept credit card
transactions within your site.

This gateway supports the following features:

Purchase

Refund

Recurring payment

The following fields are required:

1. ProfileID – Your API profile ID.

2. Password – Your API password.

Please contact Ben Nunn or Paul Osborne via email (tech-support@cashflows.com) or by phone (01223 550920) to verify
your CashFlows account configuration. In particular, if you intend to accept recurring payments, please let them know the
Storefront uses the "Alternative Recurring Payment Request parameters" to handle recurring transactions.

http://www.cashflows.com/

Chase Paymentech Orbital Gateway
Chase Paymentech (http://www.chasepaymentech.com) Orbital Gateway is a direct payment gateway that allows you to
accept credit card transactions within your site. Ensure that your merchant account is set up to use either the "Salem" or
“Tampa” implementation.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Username – The credentials for Chase Paymentech Orbital Gateway.

2. Password

3. Merchant ID

4. Terminal ID – For example “001”.

5. Bin - Enter "000001" for Salem implementation or "000002" for Tampa implementation.

When running in "Salem" implementation, you're responsible for running your own offline end-of-day batch settlement. The
Storefront does not perform any batch settlement.

To certify your merchant account for use with Revindex Storefront, please contact Jason Kimbrell, Director, Integrated
Solutions - Research & Discovery at Chase Paymentech (Phone: 214.849.3634,
Email: Jason.Kimbrell@Chasepaymentech.com).

http://www.chasepaymentech.com/

Corduro
Corduro (http://www.corduro.com/) is a direct payment gateway that allows you to accept credit card transactions within
your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Void

Recurring payment

Tokenization

The following fields are required:

1. PEM certificate

2. Client number

3. Username

4. Password

5. Process account number

http://www.corduro.com/

CyberSource
CyberSource (http://www.cybersource.com/) SOAP is a direct payment gateway that allows you to accept credit card
transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Merchant ID

2. Transaction Key

Please make sure you use the security keys provided under the SOAP Toolkit API.

http://www.cybersource.com/

Dotpay
Dotpay (http://www.dotpay.pl/en/) is a Polish payment wallet gateway that allows you to accept a variety of payments
(credit card, bank transfer, debit, etc.) through the hosted page on Dotpay Web site.

This gateway supports the following features:

Purchase using gateway hosted page

Payment notification

The following fields are required:

1. Account ID

2. Pin

You also need to configure your Dotpay account under Settings > URLC parameters to set the option to "Permit to
receive URLC parameter from external services" in order for the payment notification to work.

http://www.dotpay.pl/en/

Elavon Virtual Merchant
Elavon (http://www.elavon.com) Virtual Merchant is a direct payment gateway that allows you to accept credit card
transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Account ID – Also known as your account’s Merchant ID.

2. User ID

3. Pin – This number is generated within Virtual Merchant admin page.

Elavon Virtual Merchant allows you to customize the required and non-required fields from Elavon’s Terminal > Merchant
> Payment fields page. It is, however, recommended that you keep the required fields to a minimal.

http://www.elavon.com/

eProcessing Network
eProcessing Network (http://www.eprocessingnetwork.com) is a direct payment gateway that allows you to accept credit
card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Account number

2. Restrict key

You must also enable Authorize.Net gateway on your account to use eProcessing Network.

http://www.eprocessingnetwork.com/

eWay Direct Payment Australia
eWay Direct Payment (http://www.eway.com.au) is a direct payment gateway that allows you to accept credit card
transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Customer ID - Your API Customer ID is not your merchant number.

2. Refund password - Password required and must be enabled if you intend to perform refund through the Storefront.

http://www.eway.com.au/

FirstData Global Gateway Web Service
FirstData Global Gateway (http://www.firstdata.com), also known as LinkPoint, Web Service is a direct payment gateway
that allows you to accept credit card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. User – Your API username and is different from your account username. The user is contained in the
WS<StoreID>._.1.auth.txt file.

2. Password – Your API password and is different from your account password. The password is contained in the
WS<StoreID>._.1.auth.txt file.

3. PEM Certificate – Open the PEM certificate (WS<StoreID>._.1.pem file) using Notepad. Copy the entire content
into this field including the BEGIN CERTIFICATE header and END CERTIFICATE footer.

Login to your virtual terminal (https://secure.linkpt.net/lpc/servlet/LPCLogin (https://secure.linkpt.net/lpc/servlet/LPCLogin))
and download the certificate under Support > Download Center menu. Enter your Tax ID and click Download for Web
service. Extract the zip file.

You will also need to install the PKCS #12 certificate (WS<StoreID>._.1.p12 file) contained in the same archive if your
server is unable to connect to FirstData or you receive the error "Could not create SSL/TLS secure channel".

1. Run the Windows MMC console from the command prompt.

2. Click on File > Add/Remove Snap-In to add the Certificates object.

3. Choose Computer account, followed by Local Computer when prompted.

4. Expand the Certificates (Local Computer) node. The client certificate will be installed in the Personal folder. Right
click the Personal folder, select All Tasks, and click Import.

5. Follow the wizard to import the p12 file. The password is contained in the WS<StoreID>._.1.p12.pw.txt file you
received in your archive.

6. Grant the IIS application pool user access to the newly imported certificate. From the console, right mouse on the
certificate you just imported and click on All Tasks > Manage Private Keys. Click Add and then enter the username

http://www.firstdata.com/
https://secure.linkpt.net/lpc/servlet/LPCLogin

of the IIS application pool user (e.g. IIS App Pool\DefaultAppPool) and click OK. Make sure to grant that user Full Control
permission.

Alternatively, you can also grant permission using the WinHttpCertCfg tool from Microsoft
(http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=19801). Run the following command to grant

access to the IIS user where <StoreID> is your Store ID and AppPoolUser is your IIS Application Pool user.

Winhttpcertcfg -g –c LOCAL_MACHINE\My –s WS<StoreID>._.1 –a AppPoolUser

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=19801

FTNI
FTNI (http://www.ftni.com/) is a direct payment gateway that allows you to accept credit card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

Tokenization

The following fields are required:

1. Username - Your API username.

2. Password

http://www.ftni.com/

FTNI ACH
FTNI (http://www.ftni.com/) ACH is a direct payment gateway that allows you to accept ACH/eChecks transactions within
your site.

This gateway supports the following features:

Invoice

Refund

The following fields are required:

1. Username - Your API username.

2. Password

http://www.ftni.com/

InternetSecure
InternetSecure (http://internetsecure.com/) is a direct payment gateway that allows you to accept credit card transactions
within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Gateway ID

You must contact InternetSecure to enable online refund and authorization operations in your account if you intend to use
these features.

http://internetsecure.com/

Intuit QuickBooks Merchant Service
Intuit QuickBooks Merchant Service (http://payments.intuit.com/products/internet-merchant-accounts.jsp) (QBMS) is a
direct payment gateway that allows you to accept credit card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

Follow the steps below to obtain the information needed by the payment gateway.

1. You first need to register with https://developer.intuit.com
(https://developer.intuit.com/) (previously http://appreg.intuit.com (http://appreg.intuit.com)) and login to the site.

2. Create a new app and choose either "Select API" or "QBMS Payments App".

3. Under "Legacy QBMS Payments App" and click on the Create a QBMS payments app. Set the following
information:

Application type - Choose Desktop

Environment - Choose Production

Application Name - Give the name of your application

Application Identifier - Give a unique name without spaces

Domain name - Enter any domain name (e.g. mysite.com)

4. If you receive a verification email, make sure to click on the verification link that you received in your email and enter the

verification code to confirm your new application. You may skip this step if you don't receive an email.

5. Once verified, take note of your AppID and AppLogin information.

6. Go to the following URL to obtain your connection ticket where <AppID> should be replaced with your application ID
that you created. Choose the production URL if you created a production environment.

Production:
https://merchantaccount.quickbooks.com/j/sdkconnection?appid=<AppID>&sessionEnabled=true

Test mode:
https://merchantaccount.ptc.quickbooks.com/j/sdkconnection?appid=<AppID>&sessionEnabled=false

http://payments.intuit.com/products/internet-merchant-accounts.jsp
https://developer.intuit.com/
http://appreg.intuit.com/

7. Login to the page with your merchant email and password.

8. Click on the Create connection button if you're not already presented with the connection ticket screen.

9. Copy the connection ticket info.

Once you have verified your application, you will be able to collect the following information that will be required to
configure your payment gateway in the Storefront:

1. App ID

2. App Login

3. Connection Ticket

Please ensure you have disabled the Login Security option on your Intuit account as described here
(https://developer.intuit.com/docs/030_qbms/0070_advanced_topics/session_authentication) if you encounter any session
authentication error.

https://developer.intuit.com/docs/030_qbms/0070_advanced_topics/session_authentication

MasterCard Internet Gateway Service Hosted
MasterCard Internet Gateway Service (https://www.mastercardpaymentgateway.com) 3-Party Virtual Payment Client, also
known as MIGS VPC and ANZ eGate, is a payment wallet gateway that allows you to accept credit card payments through
the hosted page on MasterCard Web site. MIGS is used by many banks including ANZ, Bendigo, Commonwealth,
Mauritius Commercial Bank, etc.

This gateway supports the following features:

Purchase using gateway hosted page

The following fields are required:

1. Merchant ID

2. Access Code

3. Secure Hash Secret

https://www.mastercardpaymentgateway.com/

Merchant e-Solutions
Merchant e-Solutions (http://www.merchante-solutions.com) is a direct payment gateway that allows you to accept credit
card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Profile ID

2. Profile Key

http://www.merchante-solutions.com/

Mollie
Mollie (https://www.mollie.com) is a popular payment wallet gateway in Europe that allows you to accept a variety of
payments through the hosted page on Mollie Web site.

This gateway supports the following features:

Purchase using gateway hosted page

Payment notification

Recurring payment

The following fields are required:

1. API Key

Please ensure your primary currency is configured for EURO.

https://www.mollie.com/

Moneris eSelectPlus Canada
Moneris eSelectPlus (http://www.eselectplus.ca) is a Canadian direct payment gateway that allows you to accept credit
card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Store ID

2. API Token

http://www.eselectplus.ca/

NMI
NMI (Network Merchants LLC) (https://www.nmi.com/) is a payment gateway that allows you to accept credit card transactions

within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

Tokenization

3D Secure

The following fields are required:

1. Key ID - Only required if 3D Secure is enabled.

2. Key - Only required if 3D Secure is enabled.

3. Username - Ensure the account has access to perform auth, sale, capture, void, refund.

4. Password

5. Gateway URL - NMI provides white label payment processing for many other payment gateways. If you're using a
gateway that is utilizing NMI beneath the cover, you simply need to enter the appropriate Gateway URL. Otherwise, you
can ignore this field.

https://www.nmi.com/

PayFast Website Payment
PayFast (http://www.payfast.co.za) Website Payment is a payment wallet gateway that allows you to accept a variety of
payments (credit card, voucher, etc.) through the hosted page on PayFast Web site.

This gateway supports the following features:

Purchase using gateway hosted page

Payment notification

The following fields are required:

1. Merchant ID

2. Merchant Key

3. PDT Key - PDT allows the Storefront to validate the transaction was successful after redirecting the customer to
PayFast Web site. if you enabled PDT on your PayFast account, you need to enter the PDT key. If you leave it
empty, the Storefront will rely solely on the ITN notification from PayFast.

http://www.payfast.co.za/

Payment Express PxPay
Payment Express (https://paymentexpress.com/) PxPay is a payment wallet gateway that allows you to accept credit card
transactions using a hosted payment page on Payment Express Web site.

This gateway supports the following features:

Purchase using gateway hosted page

The following fields are required:

1. PxPost UserID

2. PxPost Key

https://paymentexpress.com/

Payment Express PxPost
Payment Express (https://paymentexpress.com/) PxPost is a direct payment gateway that allows you to accept credit card
transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. PxPost Username

2. PxPost Password

https://paymentexpress.com/

PayPal Express Checkout
PayPal (http://www.paypal.com) Express Checkout is a payment wallet gateway that allows you to accept PayPal
transactions using a hosted page on PayPal Web site.

This gateway supports the following features:

Purchase using gateway hosted page

Recurring payment

The following fields are required:

1. Username – Your API username and is different from your account username.

2. Password – Your API password and is different from your account password.

3. Signature

To obtain the API credentials, you need to have a personal or business account with PayPal. Follow the steps below to
obtain your credentials.

1. Login to PayPal Web site and go to your Profile and then click Profile and Settings.

2. Then go to My selling tools.

3. Click on Update for the "API Access" section.

4. Click on Set up PayPal API credentials and permissions.

5. Under the "NVP/SOAP API integration" section, click on View API Signature.

6. Copy the API credentials (API Username, API Password and Signature) information.

For recurring payment, you will need to contact PayPal to enable "Reference Transactions" in your account first.

If you are using a URL rewriter, please ensure that it is not rewriting your checkout's page URL to lowercase as PayPal will
redirect back to your site passing a security token that needs to be in mixed-case.

http://www.paypal.com/

PayPal Payment Gateway
PayPal (http://www.paypal.com) Payment Gateway (formerly Payflow Pro and can be used with PayPal Payments Pro) is a
direct payment gateway that allows you to accept credit card transactions within your site by interfacing with other major
merchant providers.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. User – If you set up one or more additional users on the account, this value is the ID
of the user authorized to process transactions. If, however, you have not set up additional
users on the account, User has the same value as Vendor.

2. Vendor - Your merchant login ID that you created when you registered for the account.

3. Partner - The ID provided to you by the authorized PayPal Reseller who registered you
for the Payflow SDK. If you purchased your account directly from PayPal, use "PayPal".

4. Password – The password that you defined while registering for the account.

To obtain a Payflow Pro account, you must already have a merchant account with one of their compatible merchant
providers or using PayPal Payments Pro. If you don't have a merchant account, you can obtain both the merchant account
and Payflow Pro by contacing Revindex. You can also sign up for Payflow Pro directly from https://manager.paypal.com
(https://manager.paypal.com)

http://www.paypal.com/
https://manager.paypal.com/

PayPal Payments Standard
PayPal (http://www.paypal.com/) Payments Standard is a payment wallet gateway that allows you to accept PayPal and
credit card transactions using a hosted page on PayPal Web site. Customers will be redirected temporarily to the hosted
payment page to complete the checkout process.

This gateway supports the following features:

Purchase using gateway hosted page

Payment notification

The following fields are required:

1. Email – Your PayPal registered email account.

2. Username – Your API username and is different from your account username.

3. Password – Your API password and is different from your account password.

4. Signature

To obtain the API credentials, you need to have a personal or business account with PayPal. Follow the steps below to
obtain your credentials.

1. Login to PayPal Web site and go to your Profile and then click Profile and Settings.

2. Then go to My selling tools.

3. Click on Update for the "API Access" section.

4. Click on Set up PayPal API credentials and permissions.

5. Under the "NVP/SOAP API integration" section, click on View API Signature.

6. Copy the API credentials (API Username, API Password and Signature) information.

Checkout using PayPal Website Payments Standard relies on the Web browser redirection to a PayPal hosted payment
page and therefore, you need to configure the return URL to ensure the customer is safely redirected back to your site
after completing their payment on PayPal. To configure the return URL, login to PayPal Web site and go to Profile. Then
go to Website payment preferences. Enable Auto Return and simply set the Return URL field to your Web site’s root
address (e.g. http://www.example.com (http://www.example.com)). The Storefront will automatically set the complete
notification URL via the PayPal API behind the scene.
Revindex Storefront supports Instant Payment Notification (IPN) with PayPal Website Payments Standard. IPN allows a
checkout to complete without the customer needing to redirect back to your site after paying on PayPal.com site. There is
nothing to configure but if your PayPal account is set to block payments for non-confirmed addresses, IPN may not work

http://www.paypal.com/
http://www.example.com/

correctly. To allow payments from non-confirmed addresses, go to your PayPal account under Profile > Payment
Receiving Preferences and select "No" for the Block payments from U.S. users who do not provide a Confirmed
Address setting.

PayPal Website Payments Pro
PayPal (http://www.paypal.com/) Website Payments Pro is a direct payment gateway that allows you to accept credit card
transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Username – Your API username and is different from your account username.

2. Password – Your API password and is different from your account password.

3. Signature

To obtain the API credentials, you need to have a business account with PayPal. Login to PayPal Web site and go to
Profile. Then go to API Access and followed by Request API Credentials. Select Request API signature and agree to
the terms. Copy the API credentials (API Username, API Password and Signature) information.

http://www.paypal.com/

Paystation 3-Party
Paystation (http://www.paystation.co.nz/) 3-Party is a payment wallet gateway that allows you to accept a variety of
payments (credit card, etc.) through the hosted page on Paystation Web site.

This gateway supports the following features:

Purchase using gateway hosted page

The following fields are required:

1. Paystation ID

2. Gateway ID

You also need to provide the return URL to your Paystation by contacting info@paystation.co.nz. The return URL should
be the URL that should redirect the customer back on success. For DotNetNuke system, please specify the return URL as

your primary page (e.g. http://domain.com/Default.aspx)

http://www.paystation.co.nz/

PayTrace
Pay Trace (http://www.paytrace.com) is a direct payment gateway that allows you to accept credit card transactions within
your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Username

2. Password

http://www.paytrace.com/

PayU Business
PayU (https://www.payu.co.za/) Business is a payment wallet that allows you to accept credit card, bank payments and
other forms of payments using a hosted payment page on PayU Web site.

This gateway supports the following features:

Purchase using gateway hosted page

Payment notification

The following fields are required:

1. API Username

2. API Password

3. API Safekey

4. Payment methods - The list of available payment methods for your account (separate each value by a comma). See list of
valid values here (http://help.payu.co.za/display/developers/Supported+payment+methods). E.g. "CREDITCARD,
MASTERPASS".

Primary currency must be ZAR (South Africa).

https://www.payu.co.za/
http://help.payu.co.za/display/developers/Supported+payment+methods

PayU Enterprise
PayU (https://www.payu.co.za/) Enterprise is a direct payment gateway that allows you to accept credit card transactions
within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment (not available if 3D Secure is enabled in your account).

The following fields are required:

1. API Username

2. API Password

3. API Safekey

https://www.payu.co.za/

Peach Payments
Peach Payments (http://peachpayments.com/) XML Integrator is a payment profile gateway that allows you to accept
credit card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

Tokenization

3D Secure

The following fields are required:

1. Sender

2. Login

3. Password

4. Registration channel - This channel should have 3D Secure enabled.

5. Payment channel - This channel should have 3D Secure disabled.

The Registration channel is used for the initial transaction and the Payment channel is used for subsequent recurring
debits. You need to make sure to enter the channel with 3D Secure enabled in the Registration field and the recurring
enabled channel in the Payment field. You must ensure you have this setting setup correctly.

http://peachpayments.com/

Princeton CardConnect
Princeton Payment Solutions (http://www.prinpay.com) CardConnect is a direct payment gateway that allows you to accept
credit card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Merchant ID

2. Username

3. Password

4. Web service URL - The SOAP Web service URL gateway. For example, the production Web service URL may look
like https://demo.prinpay.com:8443/cardconnect/CCWSv1 and for testing with the sandbox, the Web service URL would look
like https://demo.prinpay.com:6443/cardconnect/CCWSv1

You may also need to provide your server's IP address to Princeton Payment Solutions in order for them to authorize your
server to call their API service.

http://www.prinpay.com/

PSiGate XML Messenger
PSiGate (http://www.psigate.com) is a direct payment gateway that allows you to accept credit card transactions within
your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Store ID

2. Passphrase

http://www.psigate.com/

Sage Pay Direct
Sage Pay (https://applications.sagepay.com/apply/CBA37350-B26B-0EFE-0FE4-FA1A470A72DB), formerly known as
ProtX, Direct is a direct payment gateway in the U.K that allows you to accept credit card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Register your server’s IP address with Sage Pay.

2. Ensure your Sage Pay currency setting supports your Storefront’s primary currency.

3. Vendor name – Your registered vendor name with Sage Pay.

In order to obtain permission to transact in production mode, Sage Pay requires that you perform a series of purchases
and refunds starting with the simulator account (enable Simulation mode only). Once successful, you need to contact
Sage Pay to obtain a test account (enable Test mode only). The valid simulator and test credit card numbers are located
at http://www.sagepay.com/help/faq/how_can_i_test_the_different_card_types
(http://www.sagepay.com/help/faq/how_can_i_test_the_different_card_types). Once the tests are successfully completed,
contact Sage Pay to provide you with the production accounts needed for your business.

https://applications.sagepay.com/apply/CBA37350-B26B-0EFE-0FE4-FA1A470A72DB
http://www.sagepay.com/help/faq/how_can_i_test_the_different_card_types

Sage Pay Form
Sage Pay (https://applications.sagepay.com/apply/CBA37350-B26B-0EFE-0FE4-FA1A470A72DB) Form is a payment
wallet gateway in the U.K that allows you to accept a variety of payment methods using Sage Pay's hosted payment page.

This gateway supports the following features:

Purchase using gateway hosted page

The following fields are required:

Vendor name

Encryption password

Your site must enable human friendly URL format because Sage Pay Form is unable to correctly handle URLs that contain
URL reserved characters.

https://applications.sagepay.com/apply/CBA37350-B26B-0EFE-0FE4-FA1A470A72DB

Sage Payments Direct
Sage Payments (https://www.sage.com/en-us/payment-processing/) Direct is a direct payment gateway that allows you to
accept credit card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

Tokenization

The following fields are required:

1. Merchant ID

2. Merchant Key

https://www.sage.com/en-us/payment-processing/

Stripe
Stripe (https://stripe.com) is a payment gateway that allows you to accept credit card transactions within your site.
This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Recurring payment

Tokenization

The following fields are required:

1. Secret Key

2. Publishable Key

You must manually enable "Process payments unsafely" from the Stripe dashboard
(https://dashboard.stripe.com/account/integration/settings). From the dashboard, click on "Show Advanced Options" then
"Integration" and enable "Process payments unsafely.".

https://stripe.com/
https://dashboard.stripe.com/account/integration/settings

Suomen Verkkomaksut
Suomen Verkkomaksut (http://www.verkkomaksut.fi) is a payment wallet gateway allows you to accept a variety of
payments (credit card, bank transfer, debit, etc.) through the hosted page on Verkkomaksut Web site.

This gateway supports the following features:

Purchase using gateway hosted page

Payment notification

The following fields are required:

1. Merchant ID

2. Secret Code

Only the Euro currency is accepted for Finnish banks, otherwise the payment will not be accepted.

http://www.verkkomaksut.fi/

Total Apps
TotalApps (https://total-apps.com/) Direct Post is a direct payment gateway that allows you to accept credit card
transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

Tokenization

The following fields are required:

1. Username - Your API username.

2. Password

https://total-apps.com/

Towah
Towah (http://www.towahgroup.com) is a payment wallet gateway that allows you to accept a variety of payments (credit
card, bank transfer, debit, etc.) through the hosted page on Towah Web site.

This gateway supports the following features:

Purchase using gateway hosted page

Payment notification

The following fields are required:

1. Merchant ID

2. Secret Key

You also need to notify your account manager the location of your instant payment notification handler using the URL
address format below where <Site> is your domain name and <Number> is the DotNetNuke's assigned portal number
usually "0" if you only have a single portal.

http://<Site>/DesktopModules/Revindex.Dnn.RevindexStorefront/PaymentNotificationHandler.ashx?portalid=
<Number>&rvdsfpaygw=Towah

http://www.towahgroup.com/

USA ePay
USA ePay (http://www.usaepay.com) is a direct payment gateway allows you to accept credit card transactions within your
site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Register your server’s IP address with USA ePay.

2. Source key

http://www.usaepay.com/

Virtual Card Services Pay
Virtual Card Services (VCS) (http://www.vcs.co.za) Pay is a payment profile gateway that allows you to accept credit card
through the hosted page on VCS Web site.

This gateway supports the following features:

Purchase

Purchase using gateway hosted page

Payment notification

Recurring payment

The following fields are required:

1. Terminal ID

2. MD5 Key

3. Username

4. Password

From your VCS virtual terminal, you need to configure under the Merchant Administration section:

Do Auth Callback: Yes

Set the Approved Callback URL & Declined Callback URL: The location of your instant payment notification handler using

the URL address format below where <Site> is your domain name and <Number> is the DotNetNuke's assigned portal

number usually "0" if you only have a single portal.

http://<Site>/DesktopModules/Revindex.Dnn.RevindexStorefront/PaymentNotificationHandler.ashx?portalid=

<Number>&rvdsfpaygw=VirtualCardServicesPay

Callback Method: POST

Response Format: Name Value Pairs

You also need to send a secret passphrase (your MD5 Key) to support@vcs.co.za to activate the security hash check
and request enable live operation for your account.

http://www.vcs.co.za/

WorldPay Corporate XML Direct
WorldPay (http://www.worldpay.com) Corporate XML Direct is a direct payment gateway that allows you to accept credit
card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

The following fields are required:

1. Register your server’s IP address with WorldPay.

2. MerchantCode

3. XML Password - Your API password and is different from your account password.

WorldPay by default automatically captures an authorized transaction. If you don’t want to automatically capture the funds
after authorization, you need to configure the Capture Delay settings from their administration panel.

Any order modification such as capture, refund or void transactions are performed offline by WorldPay even when the
Storefront receives a successful acknowledgement. You are therefore responsible to verify that the order modifications are
eventually applied by WorldPay.

http://www.worldpay.com/

Zooz
Zooz (http://www.zooz.com/) is a payment gateway that allows you to accept credit card transactions within your site.

This gateway supports the following features:

Authorize

Capture

Purchase

Refund

Void

Recurring payment

Tokenization

3D Secure

The following fields are required:

1. Unique ID

2. App key

3D Secure only works with authorize transactions. For recurring billing, you must request support@zooz.com
(mailto:support@zooz.com) with the name of your app to allow your account to work with transactions without CVV after the first
transaction.

http://www.zooz.com/
mailto:support@zooz.com

Custom gateway
You can easily integrate your own custom payment gateway by emulating the API of another supported gateway. For
example, you can expose the same transaction services (Authorize, Purchase, Capture, Void, Refund, etc.) from
Authorize.net AIM developer guide (http://www.authorize.net/content/dam/authorize/documents/AIM_guide.pdf) and
configure the Storefront to direct all calls to your gateway URL. The Storefront will process all payment transactions
through your custom gateway. Your system will simply re-format the data and call your own custom payment gateway.

The Storefront currently supports a limited number of emulation endpoints from well known gateways like Authorize.net
AIM, Authorize.net SIM, NMI, Princeton Card Connect. Please consult the API documentation of individual gateway for
integration details.

Please contact us if you don't see the payment gateway you like to use.

http://www.authorize.net/content/dam/authorize/documents/AIM_guide.pdf

How to offer free products without payment
There are times when a business gives away free products or the checkout has a total amount of zero dollars after giving
away discounts, coupons, etc. and you don't want to ask the customer's payment information (e.g. credit card number) to
increase registration and checkout conversion.

You can do so by enabling the special None payment method from Configuration > Payment methods menu. The None
payment method will bypass taking payment and allows the checkout to complete successfully. However, you want to
make sure to allow this payment method only if the conditions are met (zero amount) and not accidentally bypass payment
for a valid paying order.

To do so, you need to set the Availability rule for the None payment method so that it only becomes available when the
minimum and maximum amount or balance is exactly zero.

Likewise, you may want to do the reverse for the other payment methods (credit card, etc.) and set the Availability rule to
allow only when the minimum amount or balance is greater than zero. This may or may not be the case for your business
because you may want to give a free recurring product on the first month but you also want to offer the customer to the
opportunity to enter their credit card information for taking next payments (first month free, and $20 thereafter charged to
the credit card).

How to avoid duplicate order number error
If you have historical payment transactions perhaps from a previous shopping cart and you're now in the process of
configuring the Storefront, you may not be able to process new payment transactions because your payment processor
forbids duplicate order numbers in their system. You may encounter error messages such as "The transaction was not sent
to the host because of a duplicate order id". The error occurs simply because you have already submitted a previous order
with the same order number in the past. For security reasons, certain payment processors will simply reject the new
transaction.

In this case, you may want to jump start the next order number sequence. To do so, you must first enable the Sales
order feature under Configuration > General. Once enabled, you can head over to Configuration > Sales order screen
and change the Next sales order number sequence number. Please note, once you increased the number, you cannot
decrease it so please choose an appropriate start number carefully.

Taxes
Revindex Storefront supports almost every tax rule possible (e.g. collect percent tax rate based on country, state, postal
code, quantity, product type, VAT, etc.). You can define individual tax classes from the Configuration > Taxes menu.

Click Add New then provide a name (e.g. "Goods") and choose a tax rule. Once the tax method has been added, you'll be
able to assign any taxable products to the new tax method (e.g. Clothing products can be assigned to the "Goods" tax
method, while shipping can be assigned to the "Services" tax method and taxed at a different rate).

Where it makes sense, you can enter up to 5 tax amounts in one tax calculation allowing you to break down and
charge different tax rates by country, state, county, city and municipal level if needed for bookkeeping to comply with tax
regulations. The sum of the individual tax amounts is what the customer will pay in taxes. If you don't care about tax levels,
you can simply put your entire tax amount in the first level 1. If you intend to track and report the different levels of taxation,

we suggest you follow the proposed ordering for consistency:

Tax amount 1 = Country

Tax amount 2 = State

Tax amount 3 = County

Tax amount 4 = City

Tax amount 5 = Municipal or any special jurisdiction

The custom tax formula can also use powerful XSL transform. The Storefront comes with several pre-defined tax
calculation templates (e.g. flat rate tax, percent tax on the item amount and vary by country and state, etc.). In most cases,
you can simply modify the numeric values without knowing XSL. If you have highly complex tax requirements, you can
employ full XSL syntax to output the tax calculation. To learn more about XSL, please see the XSL Transform section.

Tax formula is calculated individually against each sales order detail that has a product assigned to this tax class. When
your formula is being calculated, the current sales order detail is available in the "in/this/salesOrderDetail" node.

Tax providers
If you decide to use a tax provider (Avalara, Zip2Tax, etc.) to automatically calculate your taxes, you need to configure the
credentials needed for the Storefront to communicate with the 3rd party provider. Click on the edit icon to enter your
provider crendentials. Please see Providers (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/tax-providers/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/tax-providers/rvdwkpvm/section

Providers
Revindex Storefront supports integrated tax providers (e.g. Avalara, Zip2Tax) and will automatically calculate the tax
charge in real-time on checkout. Under Configuration > Taxes, select the type (Avalara, Zip2Tax, etc.) and then click on
the edit icon to enter the account credentials.

Please contact us if you don't see the tax provider you like to use.

Avalara

Avalara (http://www.avalara.com/) AvaTax provides real-time tax rates for U.S and international addresses. The following
fields are required:

1. Account number

2. License key

3. Company code

To ensure complete accuracy in tax calculation, we recommend that all your configured tax methods are set to use AvaTax
exclusively and you're not mixing between custom rules and other tax providers.

Under Configuration > Taxes menu, click Add new to create a new tax method and select "AvaTax" as your tax type.
Give it a name (e.g. "Products"). If you need to define a special tax category (e.g. you need to tax differently for shipping),
you can enter a Avalara tax code otherwise leave the tax code empty and click Save.

Ensure you have created your organization and selected your Nexus jurisdiction in your Avalara administration settings
first. Click on the edit icon to enter your Avalara credentials.

Click on Test connection to make sure your credentials work. Then Save.

http://www.avalara.com/

Please note you can define as many different tax methods as needed. Any of your product variants, handling or shipping can

now associate to these tax methods and will be treated as taxable.

Tax exemption
A customer may be exempt from taxes if they have a valid tax exemption number. You can enter the tax exemption number
for a customer under the People > Customers menu.

Zip2Tax
Zip2Tax (http://www.zip2tax.com/) database interface provides real-time tax rates for U.S and Canada addresses. The
following fields are required:

1. Username

2. Password

http://www.zip2tax.com/

How to use a tax table
Using the custom tax rule, you can calculate tax rate from a tax table. The tax table can be in CSV or any format you
choose. The advantage of using a tax table is it makes editing tax rates quick and easy.

The following example shows how to calculate the rate by using a sample CSV tax table from Zip2Tax
(http://www.zip2tax.com/Website/pagesProducts/z2t_table_formats.asp). You can download a sample use table here
(http://www.zip2tax.com/Website/Downloads/Sample_Tables/zip2tax_Use_Sample.csv).

1. Upload the CSV to a public location on your site or external. Take note of the URL.

2. Under Configuration > Taxes, add a new tax method. Give it a name like "Tax table".

3. Under the Rate tab, choose Custom Rate type and Custom Rule.

4. Paste the following XSL rule in the source view.

5. Modify the XSL rule to replace the example URL with where you actually hosted your CSV file.

 <xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">
 <xsl:template match="/">
 <!-- The following parser assumes the Zip2Tax csv file format with header on the first row. It
will parse the csv file into xml that we can use to query -->
 <xsl:variable name="table" select="unparsed-
text('http://www.zip2tax.com/Website/Downloads/Sample_Tables/zip2tax_Use_Sample.csv')"/>
 <xsl:variable name="rows" select="tokenize($table, '\r?\n')"/>
 <xsl:variable name="data">
 <!-- Loop through each row skipping the first header record -->
 <xsl:for-each select="subsequence($rows, 2)">
 <tax>
 <xsl:for-each select="tokenize(., ',')">
 <xsl:element name="col{position()}">
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:for-each>
 </tax>
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="city" select="lower-case(/in/salesOrder/billingCity)"/>
 <xsl:variable name="zipCode" select="/in/salesOrder/billingPostalCode"/>
 <out>
 <taxAmount1>
 <!-- Try to match by exact city and zip, then by zip only and zero otherwise -->
 <xsl:choose>
 <xsl:when test="$data/tax[lower-case(col12) = $city and col2 = $zipCode]">
 <xsl:value-of select="$data/tax[lower-case(col12) = $city and col2 = $zipCode][1]/col3"/>
 </xsl:when>
 <xsl:when test="$data/tax[col2 = $zipCode]">
 <xsl:value-of select="$data/tax[col2 = $zipCode][1]/col3"/>
 </xsl:when>
 <xsl:otherwise>0.00</xsl:otherwise>
 </xsl:choose>
 </taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 </out>
 </xsl:template>
 </xsl:transform>

1
2
3
4

5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

http://www.zip2tax.com/Website/pagesProducts/z2t_table_formats.asp
http://www.zip2tax.com/Website/Downloads/Sample_Tables/zip2tax_Use_Sample.csv

6. Save and test.

Packages
Packages are your shipping containers (box, bag, envelope, tube, etc.) used to pack your products for shipping. For
example, you may want to use a small size box to ship small items and have a large box for oversize items. You may also
have boxes that are cushion padded for fragile items like glassware or wine bottles. The different size boxes are important
and will help reduce your shipping cost by packing efficiently.

The package dimension, weight and max capacity information you provide will help the packing method to intelligently
decide the optimal way to pack your products as well as provide more accurate aggregate information to your shipping
providers (FedEx, UPS, USPS, etc.) to help reduce unforeseen charges when you actually ship out your products. Please
see Packing (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packing-
methods/rvdwkpvm/section) for more information.

You must first enable the Packing feature under Configuration > General. Once enabled, you can create packages under
Configuration > Packages menu.

When creating packages, it's important to make sure your largest package is able to fit your largest product. Otherwise, the
system will not be able to determine a suitable package to hold the product and no shipping option will be available to the
customer.

If you're using real-time shipping providers and your packing rule is set to place many products in one package, it's
important to put a realistic limit to your packages. The limit ensures the packing rule will not attempt to fit too many
products in one package and allows the system to gracefully overflow to multiple packages. For example, FedEx and UPS
have a max weight of 150 lbs per package. USPS has a max weight of 70 lbs per package. By setting the Max weight
capacity or Max quantity capacity for your package, you ensure the system will not over pack items and exceed shipping
limitations. For example, if your packing rule is using the Volume fit rule and you have configured a Max weight capacity
of 10 lbs. If a customer buys 100 units at 1 lbs each, the system will automatically use 10 boxes and pack 10 units per
box.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packing-methods/rvdwkpvm/section

Packing
If your business sells products that need to be shipped, you likely need to pack the products together in one or many
boxes before shipping out. The packing method is used to determine how products are packed together. If you don't
configure a packing method, shipping providers will assume you are shipping each item separately in its original dimension
and weight. Without a packing method defined, a customer buying 5 items will normally result in 5 times the shipping
amount to ship a single item.

How you pack will affect how you much it costs you to ship, and in turn, how much you charge your customers for
shipping. Customers will usually abandon from buying at your store if they see an extremely high shipping cost. In fact,
studies have shown (http://www.ups.com/media/en/Smarter_Strategies_for_Free_Shipping.pdf) shipping and handling fees
are the number one factor for cart abandonment. Shipping providers (FedEx, UPS, USPS, etc.) determine shipping rates
based on the weight and dimension of your boxes. With rising cost of fuel, shipping providers have aggressively increased
shipping rates to the point that they now measure dimensional weight (i.e. if your package is very large, but not necessarily
heavy, they will charge based on their calculated density instead of your package weight). It is, therefore, in your best
interest to optimize your shipping calculation by using packing methods to ensure you get the lowest shipping rates to win
your customers.

For example, if a customer orders 4 bottles of wine, the packing rule can decide if all items can fit in one large box or
whether they need to be split up in 2 medium boxes or perhaps they should be packed one small box per item because of
the fragile nature of the items. In another example, you may sell an oversize product like a bicycle that needs to be split up
in 2 boxes, one for the frame and the other for the wheels. Packing rule can help provide a more accurate shipping
estimation and save you money.

You must first enable the Packing feature under Configuration > General. Once enabled, you can start defining your
available Packages (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/packages/rvdwkpvm/section) (box, bag, envelope, tube, etc.) and their dimensions. Under Configuration >
Packing menu, you can then configure the packing method to use one of the predefined rules or write your own custom
rule. The rules can make use of these packages to determine how to pack the items.

If you recently created the packing rule, make sure you start a new cart session so that the system recognizes your
packing rule when testing.

The packing method can also use powerful XSL transform to write your own custom packing rule. The expected output
should return the shipping packages to use. The Storefront comes with several pre-defined rules that you can simply
modify the values without needing to know XSL. To learn more about XSL, please see the XSL Transform section.

http://www.ups.com/media/en/Smarter_Strategies_for_Free_Shipping.pdf
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packages/rvdwkpvm/section

Single package
The "Single package" rule assumes you will pack all your products ordered into a single package for mailing. The
dimensions that are passed to the shipping provider will be the external dimension of the package itself regardless of what
you actually store within it (i.e. it does not validate if products will actually fit since you decided this is the package to use).
However, the total weight submitted to the shipping provider is the sum of the weight of all your products plus the weight of
the empty package.

Single product
The "Single product" rule assumes you want to pack one product per package. For example, if you are shipping 3
products, each product will be packed separately. The system will attempt to find the smallest package that can fit your
product or it will create a new package dynamically if no suitable package is found.

Volume fit
The "Volume fit" rule attempts to pack as many product into as few packages possible by the calculated volume (Width x
Height x Depth). This rule is a classic "bin-packing (https://en.wikipedia.org/wiki/Bin_packing_problem)" algorithm with a
NP-hard complexity meaning even with today's modern science, there is still no known efficient way to locate a solution by
a computer without using brute force. Since 100% coverage by brute force is not always possible without overtaxing the
server, the resulting solution is only a best guess approximation by a computer that is mostly accurate, but may not
guarantee the most efficient way to pack. Only a human brain can perform this task effortlessly.

The algorithm tries to find the best fitting package(s) by matching the available volume of the package with the volume of
the products as well as taking into consideration any package quantity restrictions, max weight, etc. The available volume
of the package is reduced by the fill factor to allow for some empty space in real life packing (e.g if fill factor is 90%, it
means the available space of the package is 90% of the volume of the internal package dimensions). If it cannot fit all in
one package, it will overflow to the next package and so on. The algorithm will optimize for the least number of packages
by favoring for larger packages over smaller ones (i.e. it will try to fit more into a large package to avoid splitting into many
smaller ones). If no suitable package is found that can fit the smallest product, it will dynamically create a package to hold
the product.

https://en.wikipedia.org/wiki/Bin_packing_problem

Shipping
If your product requires shipping, you can configure available shipping methods and rate from the Configuration
> Shipping menu. Click Add New and give it a name (e.g. "Ground shipping") to create a new custom shipping method.
Select the appropriate availability and rate rules. You can assign a tax class if this shipping method is taxable. You must
create at least one shipping method if you have products for sale that require shipping.

Shipping Availability
You can configure availability rule based on quantity, amount, weight, etc. that determines if a shipping method should
become available for selection during customer checkout.

The availability rule can also use XSL transform to determine whether this shipping method is available for selection during
checkout. The expected output should return "true" to indicate this shipping method is available for selection, otherwise
"false" if disallowed. The Storefront comes with several pre-defined rules that you can simply modify the values without
needing to know XSL. To learn more about XSL, please see the XSL Transform section.

Shipping Rate
You can easily configure the shipping rate to charge based on amount, quantity, weight, product’s fixed rate, etc.

The rate formula can also use XSL transform to calculate the shipping charges. The expected output should return the
calculated shipping amount to charge. The Storefront comes with several pre-defined rules that you can simply modify the
values without needing to know XSL. To learn more about XSL, please see the XSL Transform section.

On the Catalog > Products menu, you will also want to tick the Require shipping checkbox on your product variants.
This ensures that only those products will participate in the shipping calculation. If your shipping method is using the
"Product rate" rule, it will use the amount entered in the product variant's Shipping price field to calculate shipping
charges.

Providers
Revindex Storefront supports several integrated shipping carriers (e.g. FedEx, UPS, USPS, etc.) and will automatically
calculate the shipping charge in real-time on checkout.

Start by configuring the shipping service available to your customers by adding it to the Configuration > Shipping. You
can optionally configure the availability rule (e.g. allows FedEx Priority Overnight for reseller roles only) if you wish to
restrict the shipping service to certain conditions. Because rates and availability are provided by the shipping carrier in
real-time over the Internet, your checkout page loading time will increase as you enable more than several integrated
shipping carriers. Click on the edit icon to enter the account credentials.

Only enable Test mode if your gateway provided you with a separate test account. The test account is usually different
from your production account. Under test mode, the system will attempt to transact with the gateway's sandbox server and
results will often vary depending on the test configuration. Please consult your shipping providers’s API documentation for
running in test mode.

Shipping calculation is primarily based on the customer shipping address, your store address in the Configuration >
General menu as well as the weight, dimensions and package type configured for your product. Your shipping carrier may
also determine the availability and rate based on your account standing, date of request, etc.
Please contact us if you don't see the shipping provider you like to use.

ABF
ABF (https://www.abfs.com) provides freight shipping in United States, Canada, Mexico, Puerto Rico and Dominican Republic.

The following fields are required:

Secure ID

https://www.abfs.com/

Australia Post
Australia Post (http://www.auspost.com.au/) provides letter and parcel shipping from Australia to anywhere in the world.
The following fields are required:

1. API Key

http://www.auspost.com.au/

Canada Post
Canada Post (https://www.canadapost.ca) provides letter and parcel shipping from Canada to anywhere in the world. The
following fields are required:

1. API Key UserID

2. API Key Password

3. Customer number

4. Contract ID - Optional to obtain commercial discounts.

https://www.canadapost.ca/

FedEx
FedEx (http://www.fedex.com/) provides parcel delivery service around the world and freight services. The following fields
are required:

1. Key

2. Password

3. Account number

4. Meter number

5. Freight account number - Only needed if you intended to ship by freight. The address registered with FedEx for this
account number must match your store or seller address.

You will first need to register a valid FedEx account from the http://www.fedex.com (http://www.fedex.com) web site. (Click
on the Register link).

Once you are registered, you need to request your authentication key by completing this form
(https://www.fedex.com/wpor/web/jsp/commonTC.jsp). Choose the FedEx Web Services for Shipping and Corporate
Developer. Save your authentication key. You should receive an email from FedEx with the rest of your credentials.

If you're shipping by FedEx freight services, please make sure to specify a valid NMFC freight class in your package's
shipping code (e.g. "50"). Please see Packages (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/packages/rvdwkpvm/section) for more information.

http://www.fedex.com/
http://www.fedex.com/
https://www.fedex.com/wpor/web/jsp/commonTC.jsp
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packages/rvdwkpvm/section

Shipwire
Shipwire (http://www.shipwire.com) provides order fulfillment and shipping service. With Shipwire, you can deliver your
products using a wide range of carriers including Canada Post, FedEx, Parcelforce, Purolator, Royal Mail, UPS, USPS,
etc. from multiple warehouses. The following fields are required:

1. Username

2. Password

You will first need to register a valid Shipwire account from the http://www.shipwire.com (http://www.shipwire.com) web
site.

http://www.shipwire.com/
http://www.shipwire.com/

CouriersPlease
CouriersPlease (https://www.couriersplease.com.au/) provides primarily parcel shipping in Australia. The following fields
are required:

Account number

API Key

https://www.couriersplease.com.au/

Southeastern
Southeastern Freight Lines (https://www.sefl.com) provides freight shipping in United States, Canada and Mexico. The
following fields are required:

Username

Password

Customer account

Please make sure to specify a valid NMFC freight class code in your package's shipping code (e.g. "50"). Please
see Packages (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packages/rvdwkpvm/section)
for more information.

https://www.sefl.com/
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packages/rvdwkpvm/section

Unishippers
Unishippers (https://www.unishippers.com) provides shipping cost savings through Unishippers extensive partners. The
following fields are required:

Username

Password

Customer number

UPS account number

https://www.unishippers.com/

UPS
UPS (http://www.ups.com/) provides parcel delivery service around the world and freight services. The following fields are
required:

1. Access key

2. Username

3. Password

4. Shipper number - This is also known as your account number.

You will first need a valid UPS account by registering here (https://www.ups.com/upsdeveloperkit) (Click on the Register
link).

Once you are registered, you need to request your access key by going to the Technology support > Developer
resource > UPS Developer Kit page on the UPS web site. Click on the Request an access key link. Complete the form.

If you're shipping by UPS freight services, please make sure to specify a valid NMFC freight class code in your package's
shipping code (e.g. "50"). Please see Packages (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/packages/rvdwkpvm/section) for more information.

http://www.ups.com/
https://www.ups.com/upsdeveloperkit
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packages/rvdwkpvm/section

USPS
USPS (https://www.usps.com/) is the official mail carrier for the United States. USPS mainly ships from within the United
States addresses (from and to). You can obtain access to USPS web tools by applying here
(https://secure.shippingapis.com/registration/). The following fields are required:

1. User ID – Your Web tools User ID.

2. Password – Your Web tools password.

You will need to contact USPS that you would like to take your account to production mode. You can tell USPS that you
have completed the testing required for production mode. Simply email
uspstechnicalsupport@mailps.custhelp.com with the subject heading "Please move User ID xxxxxx to the production
server". Alternatively, you can follow the contact instructions in the USPS email sent to you during your registration. You
may also try contacting USPS Internet Customer Care Center directly over the phone at 1-800-344-7779 Opt. 3

https://www.usps.com/
https://secure.shippingapis.com/registration/

How to configure real-time shipping
When configuring real-time shipping (FedEx, UPS, USPS, etc.), make sure to follow the steps below:

1. Obtain valid API credentials from your real-time shipping provider. Often times, the API credentials are different than
your login credentials.

2. Enter a valid address under Configuration > General menu settings. Your real-time shipping provider uses your
business address to determine the outgoing sender address. If you use the seller or warehouse functionality, make
sure they too have valid addresses.

3. Make sure your product variants have the "Require shipping" checked and have a valid Weight, Width, Height and
Depth measurements specified. Your real-time shipping provider uses the information to calculate shipping cost.

For the dimensions and weight, we recommend testing with a small product first that isn't too big and doesn't weigh
too much since over-sized items don't qualify for many shipping methods (e.g. a very large product won't be allowed
for services intended for small parcel delivery. FedEx and UPS have a max weight of 150 lbs. USPS has a max
weight of 70 lbs. On the other hand, if you're shipping by freight, your product weight should be over 150 lbs.)

For the package type, we recommend using "Unspecified" because certain types of packages are not allowed by the
shipping method (e.g "Box" cannot be shipped by a letter mail service). It's best to leave it to the shipping method to
decide what default type of package to use.

If you're using shipping by freight, you normally need to enter a shipping code that corresponds to your freight class
(e.g. "50").

Please remember to clear your shopping cart and re-add the item to your cart after each time changing the product
dimension or weight. You can also visit the shipping provider's Web site directly and enter the same
dimension/weight and compare the results.

4. We recommend that you avoid using any packing rule under Configuration > Packing to simplify your tests.

5. Configure the allowable shipping services under Configuration > Shipping menu by adding the appropriate
shipping methods. Make sure to add services that make sense (e.g. ground shipping cannot ship to Alaska, or
International etc.). Your real-time shipping provider will determine which of the configured shipping services are
available for shipping so it's a good idea to configure as many shipping services while testing even if you don't
intend to use them in production (you can remove them later).

6. For the selected Type, click on the edit icon to enter the API credentials for your shipping provider. Do not use Test
mode unless you've been explicitly given test credentials by your provider.

7. When testing and checking out as a customer, make sure to enter a valid address. Your real-time shipping
provider will use it to determine if they can service this request. For example, if you're using USPS, you probably
want to test with a valid address shipped from and to the United States. You want to avoid testing international

addresses to make your testing simpler.

8. Check your DNN Event viewer for any errors.

9. You can enable Debug logging to capture additional shipping related information from your shipping gateways.
Please see Log Level (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/log-
level/rvdwkpvm/section) for more information on how to enable debug mode.

By default, the Storefront assumes you ship each product separately. For example, if you added 2 quantities of the same
products to the cart, you would expect the shipping rates to double. If you frequently ship multiple products in a single box,
you can reduce shipping cost by telling the Storefront how you intend to pack your products. Please see Packing
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packing-methods/rvdwkpvm/section) for more
information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/log-level/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packing-methods/rvdwkpvm/section

Fulfillment
You can automate and streamline your shipping and fulfillment processes using 3rd party fulfillment systems (e.g.
ShipWorks).

You must first enable the Fulfillment feature under Configuration > General. Once enabled, you can configure your
fulfillment system from the Configuration > Fulfillment menu. Make sure to enter the account credentials by clicking on
the edit icon for each individual fulfillment systems.

Please contact us if you don't see the fulfillment provider you like to use.

ShipWorks
ShipWorks (http://www.shipworks.com) is a 3rd party software that helps you automate shipping. It will help you print
shipping labels, packing slips and track packages easily. In order to allow ShipWorks to interface with your Storefront, you
must first create the credentials. Select "Generic module" when prompted for the platform. The following fields are
required:

1. Username - enter any characters to create your username.

2. Password - enter any characters for your password.

3. URL - Enter the URL to your store's fulfillment handler page.
E.g. http://mysite.com/DesktopModules/Revindex.Dnn.RevindexStorefront/FulfillmentHandler.ashx?
portalid=0&rvdsfffgw=ShipWorks where 0 is your portal ID number. If you are a marketplace seller, you must also append
the &rvdsfsellerid=1 parameter where 1 is your seller ID.

You need to enter the same credentials and URL in your ShipWorks software to allow ShipWorks to communicate with the
Storefront.

http://www.shipworks.com/

Handling
The Storefront can charge a handling fee based on your predefined rules. For example, your business may charge a
handling fee for international customers, for shipping oversize packages or perhaps for receiving an EFT (wire transfer)
payment.

You must first enable the Handling feature under Configuration > General. Once enabled, you can configure the
handling method and rate from the Configuration > Handling menu. Click Add New and give it a name (e.g. "Packaging
") to create a new handling method and select a handling rule. You can assign a tax class if this handling method is
taxable.

The rate formula can also use XSL transform to calculate the handling charges. The expected output should return the
calculated handling amount to charge. The Storefront comes with several pre-defined rules that you can simply modify the
values without needing to know XSL. To learn more about XSL, please see the XSL Transform section.

On the Catalog > Products menu, you will also want to tick the Require handling checkbox on your product variants.
This ensures that only those products will participate in the handling calculation. If your handling method is using the
"Product rate" rule, it will use the amount entered in the product variant's Handling price field to calculate handling
charges.

How to charge handling for payment type
A good use for handling method is to charge an extra service fee depending on the customer's selected payment method.
For example, you may want to charge a small fee if the customer pays by wire transfer because you incur a fee from your
bank for this type of payment.

The video below shows how to charge $1.00 when the customer elects to pay by credit card. Please see Payment Method
Types (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/payment-method-
types/rvdwkpvm/section) for the different payment method lookup values.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/payment-method-types/rvdwkpvm/section

Communications

Cart abandon email
This email is sent out to users whose incomplete orders have reached the threshold time and is considered as abandoned.
For example, you may want to lure them back to shop at your site with a discount coupon, etc.

An order is considered abandoned if the status is "Incomplete" and the elapsed time from the sales order's create date
exceeds the Cart abandon timeout value under Configuration > Cart settings. The cart abandon email is only sent once
to avoid annoying the customer and this is indicated in the sales order's Cart abandon notified flag that the merchant can
reset if needed. You can also force the cart abandon email to send out by clicking on the Email cart abandon button
under the sales order screen.

For obvious reasons, a cart abandon email can only be sent if there is an email address captured with the order (i.e the
user registered an account or attempted to checkout with an email address). By default, the Storefront will send the email
to the registered user email and billing email addresses.

If your store has amassed many incomplete orders for a long period of time and you now decide to enable the cart
abandon email, you may want to manually mark the old incomplete orders as already notified first. You can also configure
the Storefront to automatically delete incomplete orders (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/how-to-auto-delete-incomplete-orders/rvdwkpvm/section) and letting it run its due course prior to enabling the
cart abandon email.

The Basic template rule can accept XSL tokens (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/xsl-tokens/rvdwkpvm/section) to inject dynamic data. Below is the sample XML input that you can retrieve token
values from:

<in>
 <cart>
 <tabUrl>https://site.com/page</tabUrl>
 </cart>
 <configuration>
 <generalEmailRecipient>recipient@localhost.com</generalEmailRecipient>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-auto-delete-incomplete-orders/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <formattedAmount>$10.00</formattedAmount>
 <formattedCombinedAmount>$10.00</formattedCombinedAmount>
 <formattedCombinedDiscountAmount>$0.00</formattedCombinedDiscountAmount>
 <formattedCombinedPrice>$10.00</formattedCombinedPrice>
 <formattedCombinedTotalAmount>$10.00</formattedCombinedTotalAmount>
 <formattedDiscountAmount>$0.00</formattedDiscountAmount>
 <formattedPrice>$10.00</formattedPrice>
 <formattedTotalAmount>$10.00</formattedTotalAmount>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 <sku>A100</sku>
 <status>1</status>
 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPayments>
 <salesPayment>
 <amount>10.0000</amount>
 <creditCardHint>4345</creditCardHint>
 <formattedAmount>$10.00</formattedAmount>
 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>
 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>7</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

Order alert email
Email alerts are sent out whenever a new order is placed on your shopping cart. By default, the Storefront will send the
alert to the sender email address listed under the Configuration > General settings.

The Basic template rule can accept XSL tokens (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/xsl-tokens/rvdwkpvm/section) to inject dynamic data. Below is the sample XML input that you can retrieve token
values from:

<in>
 <configuration>
 <generalEmailRecipient>recipient@localhost.com</generalEmailRecipient>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <formattedAmount>$10.00</formattedAmount>
 <formattedCombinedAmount>$10.00</formattedCombinedAmount>
 <formattedCombinedDiscountAmount>$0.00</formattedCombinedDiscountAmount>
 <formattedCombinedPrice>$10.00</formattedCombinedPrice>
 <formattedCombinedTotalAmount>$10.00</formattedCombinedTotalAmount>
 <formattedDiscountAmount>$0.00</formattedDiscountAmount>
 <formattedPrice>$10.00</formattedPrice>
 <formattedTotalAmount>$10.00</formattedTotalAmount>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 <sku>A100</sku>
 <status>1</status>
 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPayments>
 <salesPayment>
 <amount>10.0000</amount>
 <creditCardHint>4345</creditCardHint>
 <formattedAmount>$10.00</formattedAmount>

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>
 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

Order invoice email
Email invoices are useful for requesting payment. By default, the Storefront will send the invoice to the registered email
address of the buyer.

The Basic template rule can accept XSL tokens (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/xsl-tokens/rvdwkpvm/section) to inject dynamic data. Below is the sample XML input that you can retrieve token
values from:

<in>
 <configuration>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <manageOrder>
 <tabUrl>https://site.com/pageorder</tabUrl>
 </manageOrder>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <formattedAmount>$10.00</formattedAmount>
 <formattedCombinedAmount>$10.00</formattedCombinedAmount>
 <formattedCombinedDiscountAmount>$0.00</formattedCombinedDiscountAmount>
 <formattedCombinedPrice>$10.00</formattedCombinedPrice>
 <formattedCombinedTotalAmount>$10.00</formattedCombinedTotalAmount>
 <formattedDiscountAmount>$0.00</formattedDiscountAmount>
 <formattedPrice>$10.00</formattedPrice>
 <formattedTotalAmount>$10.00</formattedTotalAmount>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 <sku>A100</sku>
 <status>1</status>
 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPayments>
 <salesPayment>
 <amount>10.0000</amount>

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

 <creditCardHint>4345</creditCardHint>
 <formattedAmount>$10.00</formattedAmount>
 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>
 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

 <Street>1 Melrose</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

Order invoice print
Print invoice is useful for requesting payment.

The Basic template rule can accept XSL tokens (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/xsl-tokens/rvdwkpvm/section) to inject dynamic data. Below is the sample XML input that you can retrieve token
values from:

<in>
 <configuration>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <manageOrder>
 <tabUrl>https://site.com/page</tabUrl>
 </manageOrder>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <formattedAmount>$10.00</formattedAmount>
 <formattedCombinedAmount>$10.00</formattedCombinedAmount>
 <formattedCombinedDiscountAmount>$0.00</formattedCombinedDiscountAmount>
 <formattedCombinedPrice>$10.00</formattedCombinedPrice>
 <formattedCombinedTotalAmount>$10.00</formattedCombinedTotalAmount>
 <formattedDiscountAmount>$0.00</formattedDiscountAmount>
 <formattedPrice>$10.00</formattedPrice>
 <formattedTotalAmount>$10.00</formattedTotalAmount>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 <sku>A100</sku>
 <status>1</status>
 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPayments>
 <salesPayment>
 <amount>10.0000</amount>
 <creditCardHint>4345</creditCardHint>

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>
 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

Order quote email
This email is sent to the customer after requesting for a quote. By default, the Storefront will send the email to the
registered email address of the buyer.

The Basic template rule can accept XSL tokens (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/xsl-tokens/rvdwkpvm/section) to inject dynamic data. Below is the sample XML input that you can retrieve token
values from:

<in>
 <configuration>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <manageOrder>
 <tabUrl>https://site.com/pageorder</tabUrl>
 </manageOrder>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <formattedAmount>$10.00</formattedAmount>
 <formattedCombinedAmount>$10.00</formattedCombinedAmount>
 <formattedCombinedDiscountAmount>$0.00</formattedCombinedDiscountAmount>
 <formattedCombinedPrice>$10.00</formattedCombinedPrice>
 <formattedCombinedTotalAmount>$10.00</formattedCombinedTotalAmount>
 <formattedDiscountAmount>$0.00</formattedDiscountAmount>
 <formattedPrice>$10.00</formattedPrice>
 <formattedTotalAmount>$10.00</formattedTotalAmount>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 <sku>A100</sku>
 <status>1</status>
 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPayments>
 <salesPayment>
 <amount>10.0000</amount>

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

 <creditCardHint>4345</creditCardHint>
 <formattedAmount>$10.00</formattedAmount>
 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>
 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <shippingTrackingCode>129343243</shippingTrackingCode>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

Order quote print
This templated is printable after requesting for a quote.

The Basic template rule can accept XSL tokens (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/xsl-tokens/rvdwkpvm/section) to inject dynamic data. Below is the sample XML input that you can retrieve token
values from:

<in>
 <configuration>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <manageOrder>
 <tabUrl>https://site.com/page</tabUrl>
 </manageOrder>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <formattedAmount>$10.00</formattedAmount>
 <formattedCombinedAmount>$10.00</formattedCombinedAmount>
 <formattedCombinedDiscountAmount>$0.00</formattedCombinedDiscountAmount>
 <formattedCombinedPrice>$10.00</formattedCombinedPrice>
 <formattedCombinedTotalAmount>$10.00</formattedCombinedTotalAmount>
 <formattedDiscountAmount>$0.00</formattedDiscountAmount>
 <formattedPrice>$10.00</formattedPrice>
 <formattedTotalAmount>$10.00</formattedTotalAmount>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 <sku>A100</sku>
 <status>1</status>
 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPayments>
 <salesPayment>
 <amount>10.0000</amount>
 <creditCardHint>4345</creditCardHint>

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>
 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

Order receipt email
Email receipts are sent out whenever a new order is placed on the shopping cart. By default, the Storefront will send the
receipt to the registered email address of the buyer.

The Basic template rule can accept XSL tokens (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/xsl-tokens/rvdwkpvm/section) to inject dynamic data. Below is the sample XML input that you can retrieve token
values from:

<in>
 <configuration>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <manageOrder>
 <tabUrl>https://site.com/page</tabUrl>
 </manageOrder>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 <sku>A100</sku>
 <status>1</status>
 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPayments>
 <salesPayment>
 <amount>10.0000</amount>
 <creditCardHint>4345</creditCardHint>
 <formattedAmount>$10.00</formattedAmount>
 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>
 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

Order receipt print
The Basic template rule can accept XSL tokens (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section) to
inject dynamic data. Below is the sample XML input that you can retrieve token values from:

<in>
 <configuration>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <manageOrder>
 <tabUrl>https://site.com/page</tabUrl>
 </manageOrder>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <formattedAmount>$10.00</formattedAmount>
 <formattedCombinedAmount>$10.00</formattedCombinedAmount>
 <formattedCombinedDiscountAmount>$0.00</formattedCombinedDiscountAmount>
 <formattedCombinedPrice>$10.00</formattedCombinedPrice>
 <formattedCombinedTotalAmount>$10.00</formattedCombinedTotalAmount>
 <formattedDiscountAmount>$0.00</formattedDiscountAmount>
 <formattedPrice>$10.00</formattedPrice>
 <formattedTotalAmount>$10.00</formattedTotalAmount>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 <sku>A100</sku>
 <status>1</status>
 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPayments>
 <salesPayment>
 <amount>10.0000</amount>
 <creditCardHint>4345</creditCardHint>
 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

253
254
255
256
257
258
259
260
261
262
263
264

Order update email
This email is sent to the customer after the order statuses are updated (e.g. when order has been shipped). By default, the
Storefront will send the email to the registered email address of the buyer.

The Basic template rule can accept XSL tokens (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/xsl-tokens/rvdwkpvm/section) to inject dynamic data. Below is the sample XML input that you can retrieve token
values from:

<in>
 <configuration>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <manageOrder>
 <tabUrl>https://site.com/page</tabUrl>
 </manageOrder>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <previousSalesPaymentStatus>1</previousSalesPaymentStatus>
 <previousShippingStatus>1</previousShippingStatus>
 <previousStatus>1</previousStatus>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <formattedAmount>$10.00</formattedAmount>
 <formattedCombinedAmount>$10.00</formattedCombinedAmount>
 <formattedCombinedDiscountAmount>$0.00</formattedCombinedDiscountAmount>
 <formattedCombinedPrice>$10.00</formattedCombinedPrice>
 <formattedCombinedTotalAmount>$10.00</formattedCombinedTotalAmount>
 <formattedDiscountAmount>$0.00</formattedDiscountAmount>
 <formattedPrice>$10.00</formattedPrice>
 <formattedTotalAmount>$10.00</formattedTotalAmount>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 <sku>A100</sku>
 <status>1</status>
 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

 <salesPayments>
 <salesPayment>
 <amount>10.0000</amount>
 <creditCardHint>4345</creditCardHint>
 <formattedAmount>$10.00</formattedAmount>
 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>
 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Packing slip print
The packing slip template can be printed out by the merchant to include in shipping.

The Basic template rule can accept XSL tokens (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/xsl-tokens/rvdwkpvm/section) to inject dynamic data. Below is the sample XML input that you can retrieve token
values from:

<in>
 <configuration>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <formattedAmount>$10.00</formattedAmount>
 <formattedCombinedAmount>$10.00</formattedCombinedAmount>
 <formattedCombinedDiscountAmount>$0.00</formattedCombinedDiscountAmount>
 <formattedCombinedPrice>$10.00</formattedCombinedPrice>
 <formattedCombinedTotalAmount>$10.00</formattedCombinedTotalAmount>
 <formattedDiscountAmount>$0.00</formattedDiscountAmount>
 <formattedPrice>$10.00</formattedPrice>
 <formattedTotalAmount>$10.00</formattedTotalAmount>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 <sku>A100</sku>
 <status>1</status>
 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPayments>
 <salesPayment>
 <amount>10.0000</amount>
 <creditCardHint>4345</creditCardHint>
 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPackages>
 <shippingPackage>
 <name>Regular box</name>
 <packageType>2000</packageType>
 <weight>500</weight>
 <width>20</width>
 <depth>20</depth>
 <height>20</height>
 <internalWidth>20</internalWidth>
 <internalDepth>20</internalDepth>
 <internalHeight>20</internalHeight>
 <insurredAmount>5.00</insurredAmount>
 <shippingCode />
 <products>
 <product>
 <quantity>1</quantity>
 <insurredAmount>5.00</insurredAmount>
 <salesOrderDetailID>102</salesOrderDetailID>
 </product>
 </products>
 </shippingPackage>
 </shippingPackages>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

Payment alert email
This email is sent to alert the merchant when a payment has been made to an existing order (e.g. when customer pays an
invoice). By default, the Storefront will send the alert to the sender email address listed under the Configuration >
General settings.

The Basic template rule can accept XSL tokens (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/xsl-tokens/rvdwkpvm/section) to inject dynamic data. Below is the sample XML input that you can retrieve token
values from:

<in>
 <configuration>
 <generalEmailRecipient>recipient@localhost.com</generalEmailRecipient>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <manageOrder>
 <tabUrl>https://site.com/page</tabUrl>
 </manageOrder>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <formattedAmount>$10.00</formattedAmount>
 <formattedCombinedAmount>$10.00</formattedCombinedAmount>
 <formattedCombinedDiscountAmount>$0.00</formattedCombinedDiscountAmount>
 <formattedCombinedPrice>$10.00</formattedCombinedPrice>
 <formattedCombinedTotalAmount>$10.00</formattedCombinedTotalAmount>
 <formattedDiscountAmount>$0.00</formattedDiscountAmount>
 <formattedPrice>$10.00</formattedPrice>
 <formattedTotalAmount>$10.00</formattedTotalAmount>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <sku>A100</sku>
 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPayments>
 <salesPayment>

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

 <amount>10.0000</amount>
 <creditCardHint>4345</creditCardHint>
 <formattedAmount>$10.00</formattedAmount>
 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>
 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

Recurring order payment retry email
This email is sent out to users to remind them the system will re-attempt capturing payment for a previously failed recurring
order transaction. For example, the user can then ensure their payment information is up-to-date and they have sufficient
funds in their credit card.

The Basic template rule can accept XSL tokens
(http://www.revindex.com/Resources/KnowledgeBase/RevindexStorefront/tabid/174/rvdwktid/order-alert-email-
264/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section) to inject
dynamic data. Below is the sample XML input that you can retrieve token values from:

<in>
 <configuration>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <manageOrder>
 <tabUrl>https://site.com/page</tabUrl>
 </manageOrder>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <managePaymentTabs>
 <tab>
 <tabID>67</tabID>
 </tab>
 </managePaymentTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

http://www.revindex.com/Resources/KnowledgeBase/RevindexStorefront/tabid/174/rvdwktid/order-alert-email-264/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderDetails>
 <salesOrderDetail>
 <amount>10.0000</amount>
 <amountWithTax>10.0000</amountWithTax>
 <bookingStartDate></bookingStartDate>
 <bookingStopDate></bookingStopDate>
 <combinedAmount>10.0000</combinedAmount>
 <combinedAmountWithTax>10.0000</combinedAmountWithTax>
 <combinedPrice>10.0000</combinedPrice>
 <combinedTotalAmount>10.0000</combinedTotalAmount>
 <combinedTotalAmountWithTax>10.0000</combinedTotalAmountWithTax>
 <discountAmount>0</discountAmount>
 <dynamicFormResult>
 <fields>
 <field id="CustomURL">http://www.yahoo.com</field>
 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <formattedAmount>$10.00</formattedAmount>
 <formattedCombinedAmount>$10.00</formattedCombinedAmount>
 <formattedCombinedDiscountAmount>$0.00</formattedCombinedDiscountAmount>
 <formattedCombinedPrice>$10.00</formattedCombinedPrice>
 <formattedCombinedTotalAmount>$10.00</formattedCombinedTotalAmount>
 <formattedDiscountAmount>$0.00</formattedDiscountAmount>
 <formattedPrice>$10.00</formattedPrice>
 <formattedTotalAmount>$10.00</formattedTotalAmount>
 <parentSalesOrderDetailID></parentSalesOrderDetailID>
 <price>10.0000</price>
 <productName>Good Book</productName>
 <productVariant>
 <basePrice>10.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Series 1</name>
 <product>
 <name>Good Book</name>
 <summary></summary>
 </product>
 <sku>A100</sku>
 <summary></summary>
 </productVariant>
 <productVariantExtension>
 <data>
 <shippingRate>1.00</shippingRate>
 </data>
 </productVariantExtension>
 <productVariantName>Series 1</productVariantName>
 <quantity>1</quantity>
 <salesOrderDetailID>102</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 <sku>A100</sku>
 <status>1</status>

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

 <totalAmount>10.0000</totalAmount>
 <totalAmountWithTax>10.0000</totalAmountWithTax>
 </salesOrderDetail>
 </salesOrderDetails>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPayments>
 <salesPayment>
 <amount>10.0000</amount>
 <creditCardHint>4345</creditCardHint>
 <formattedAmount>$10.00</formattedAmount>
 <paymentDate>2001-01-01T12:00:00</paymentDate>
 <paymentGateway>PayPalWPP</paymentGateway>
 <paymentHint></paymentHint>
 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <responseCode>1</responseCode>
 <transactionType>2</transactionType>
 <voucherHint></voucherHint>
 </salesPayment>
 </salesPayments>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

Recurring order reminder email
This email is sent out to users to remind them of their upcoming recurring orders are due to repeat. Users may want to be
reminded to update their address and payment information on file before the order is repeated.

The Basic template rule can accept XSL tokens
(http://www.revindex.com/Resources/KnowledgeBase/RevindexStorefront/tabid/174/rvdwktid/order-alert-email-
264/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section) to inject
dynamic data. Below is the sample XML input that you can retrieve token values from:

<in>
 <configuration>
 <generalEmailRecipient>support@localhost.com</generalEmailRecipient>
 <generalEmailSender>support@localhost.com</generalEmailSender>
 <generalStoreName>Revindex</generalStoreName>
 </configuration>
 <manageRecurringOrder>
 <tabUrl>https://site.com/page</tabUrl>
 </manageRecurringOrder>
 <portal>
 <managePaymentTabs>
 <tab>
 <tabID>65</tabID>
 </tab>
 </managePaymentTabs>
 <manageRecurringOrderTabs>
 <tab>
 <tabID>64</tabID>
 </tab>
 </manageRecurringOrderTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <recurringSalesOrders>
 <recurringSalesOrder>
 <cultureCode>en-US</cultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomFieldID1">Value...</field>
 <field id="CustomFieldID2">Value...</field>
 </fields>
 </dynamicFormResult>
 <maxRepeat></maxRepeat>
 <nextRecurringDate>2015-03-19T00:00:00</nextRecurringDate>
 <originalSalesOrderID>1686</originalSalesOrderID>
 <productVariant>
 <basePrice>19.0000</basePrice>
 <inventoryUnitType>1</inventoryUnitType>
 <msrp>10.0000</msrp>
 <name>Default</name>
 <preorderInterval>0</preorderInterval>
 <product>
 <name>Product 3</name>
 </product>
 <sku></sku>
 </productVariant>
 <productVariantID>6</productVariantID>
 <quantity>1</quantity>
 <recurringSalesOrderID>58</recurringSalesOrderID>
 <repeatCount>0</repeatCount>
 <shippingCity>Beverley hills</shippingCity>
 <shippingCompany></shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingEmail>customer@localhost.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

http://www.revindex.com/Resources/KnowledgeBase/RevindexStorefront/tabid/174/rvdwktid/order-alert-email-264/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90211</shippingPostalCode>
 <shippingStreet>1 melrose place</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>1</status>
 <userPayment>
 <city>Raleigh</city>
 <company></company>
 <countryCode>US</countryCode>
 <countryName>United States</countryName>
 <creditCardHint></creditCardHint>
 <email>customer@localhost.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <paymentHint></paymentHint>
 <paymentMethod>3</paymentMethod>
 <paymentMethodName>Credit card</paymentMethodName>
 <phone>111-111-1111</phone>
 <postalCode>27601</postalCode>
 <street>1 Jones St</street>
 <subdivisionCode>US-NC</subdivisionCode>
 <subdivisionName>California</subdivisionName>
 <voucherHint>WBEP</voucherHint>
 </userPayment>
 <userPaymentID>68</userPaymentID>
 </recurringSalesOrder>
 </recurringSalesOrders>
 <user>
 <email>customer@localhost.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>
 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo>-1</Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <PreferredTimeZone>Pacific Standard Time</PreferredTimeZone>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 road</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role 2</role>
 <role>Role 1</role>
 </roles>
 <userID>1</userID>
 <username>host</username>
 </user>
</in>

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Right receipt email
Voucher receipt is used to send an email to the customer their voucher codes. By default, the Storefront will send the
invoice to the registered email address and billing address of the buyer.

The Basic template rule can accept XSL tokens
(http://www.revindex.com/Resources/KnowledgeBase/RevindexStorefront/tabid/174/rvdwktid/email-invoice-
268/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section) to inject
dynamic data. Below is the sample XML input that you can retrieve token values from:

<in>
 <configuration>
 <generalEmailRecipient>recipient@localhost.com</generalEmailRecipient>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <manageRight>
 <tabUrl>https://site.com/pageorder</tabUrl>
 </manageRight>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageRightTabs>
 <tab>
 <tabID>176</tabID>
 </tab>
 </manageRightTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

http://www.revindex.com/Resources/KnowledgeBase/RevindexStorefront/tabid/174/rvdwktid/email-invoice-268/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
 <rights>
 <right>
 <code>VKMO2XTJKPZUNGPB</code>
 <issueDate>2013-10-23T10:17:34</issueDate>
 <rightDefinition>
 <name>License key</name>
 <description></description>
 </rightDefinition>
 <rightDefinitionID>7</rightDefinitionID>
 </right>
 </rights>
</in>

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

Voucher receipt email
Voucher receipt is used to send an email to the customer their voucher codes. By default, the Storefront will send the
invoice to the registered email address and billing address of the buyer.

The Basic template rule can accept XSL tokens
(http://www.revindex.com/Resources/KnowledgeBase/RevindexStorefront/tabid/174/rvdwktid/email-invoice-
268/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section) to inject
dynamic data. Below is the sample XML input that you can retrieve token values from:

<in>
 <configuration>
 <generalEmailRecipient>recipient@localhost.com</generalEmailRecipient>
 <generalEmailSender>test@example.com</generalEmailSender>
 <generalStoreName>Revindex Storefront</generalStoreName>
 </configuration>
 <manageVoucher>
 <tabUrl>https://site.com/pageorder</tabUrl>
 </manageVoucher>
 <portal>
 <cartTabs>
 <tab>
 <tabID>57</tabID>
 </tab>
 </cartTabs>
 <checkoutTabs>
 <tab>
 <tabID>61</tabID>
 </tab>
 </checkoutTabs>
 <manageOrderTabs>
 <tab>
 <tabID>62</tabID>
 </tab>
 </manageOrderTabs>
 <manageVoucherTabs>
 <tab>
 <tabID>174</tabID>
 </tab>
 </manageVoucherTabs>
 <portalAliases>
 <portalAlias>
 <cultureCode></cultureCode>
 <httpAlias>site.com</httpAlias>
 <isPrimary>true</isPrimary>
 <portalAliasID>1</portalAliasID>
 </portalAlias>
 </portalAliases>
 <portalID>0</portalID>
 </portal>
 <salesOrder>
 <billingCity>Beverley Hills</billingCity>
 <billingCompany>Revindex</billingCompany>
 <billingCountryCode>US</billingCountryCode>
 <billingCountryName>United States</billingCountryName>
 <billingEmail>text@example.com</billingEmail>
 <billingFirstName>John</billingFirstName>
 <billingLastName>Doe</billingLastName>
 <billingPhone>111-111-1111</billingPhone>
 <billingPostalCode>90210</billingPostalCode>
 <billingStreet>1 Melrose</billingStreet>
 <billingSubdivisionCode>US-CA</billingSubdivisionCode>
 <billingSubdivisionName>California</billingSubdivisionName>
 <businessTaxNumber>GB 123456789</businessTaxNumber>
 <couponCodes>
 <couponCode>free2</couponCode>
 </couponCodes>
 <cultureCode>en-US</cultureCode>
 <currency>
 <currencySymbol>$</currencySymbol>
 <isoCurrencySymbol>USD</isoCurrencySymbol>
 </currency>
 <currencyCultureCode>en-US</currencyCultureCode>
 <dynamicFormResult>
 <fields>
 <field id="CustomName">Name1</field>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

http://www.revindex.com/Resources/KnowledgeBase/RevindexStorefront/tabid/174/rvdwktid/email-invoice-268/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

 <field id="CustomText">MyText</field>
 <field id="CustomColor">
 <selected>Red</selected>
 <selected>Blue</selected>
 </field>
 <field id="CustomSize">
 <selected>XL</selected>
 </field>
 </fields>
 </dynamicFormResult>
 <exchangeRate>1.0000</exchangeRate>
 <formattedSubTotalAmount>$10.00</formattedSubTotalAmount>
 <formattedTotalAmount>$20.00</formattedTotalAmount>
 <formattedTotalHandlingAmount>$9.00</formattedTotalHandlingAmount>
 <formattedTotalSalesOrderDetailDiscountAmount>$0.00</formattedTotalSalesOrderDetailDiscountAmount>
 <formattedTotalSavingsAmount>$0.00</formattedTotalSavingsAmount>
 <formattedTotalShippingAmount>$1.00</formattedTotalShippingAmount>
 <formattedTotalTaxAmount></formattedTotalTaxAmount>
 <handlingAmount>9.00</handlingAmount>
 <handlingDiscountAmount>0</handlingDiscountAmount>
 <orderDate>2001-01-01T12:00:00</orderDate>
 <origin>1</origin>
 <parentSalesOrderID></parentSalesOrderID>
 <purchaseOrderNumber></purchaseOrderNumber>
 <rewardsPointsQualified>0</rewardsPointsQualified>
 <salesOrderGUID>F2CB78A0-5B3B-489a-9E62-006372ACAE34</salesOrderGUID>
 <salesOrderNumber>SA1000</salesOrderNumber>
 <salesPaymentStatus>1</salesPaymentStatus>
 <seller>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email>test@example.com</email>
 <phone>111-111-1111</phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </seller>
 <sellerID>1</sellerID>
 <shippingAmount>1.00</shippingAmount>
 <shippingCity>Beverley Hills</shippingCity>
 <shippingCompany>Revindex</shippingCompany>
 <shippingCountryCode>US</shippingCountryCode>
 <shippingCountryName>United States</shippingCountryName>
 <shippingDiscountAmount>0</shippingDiscountAmount>
 <shippingEmail>text@example.com</shippingEmail>
 <shippingFirstName>John</shippingFirstName>
 <shippingLastName>Doe</shippingLastName>
 <shippingMethod>
 <name>Ground</name>
 </shippingMethod>
 <shippingMethodID>2</shippingMethodID>
 <shippingPhone>111-111-1111</shippingPhone>
 <shippingPostalCode>90210</shippingPostalCode>
 <shippingStatus>1</shippingStatus>
 <shippingStreet>1 Melrose</shippingStreet>
 <shippingSubdivisionCode>US-CA</shippingSubdivisionCode>
 <shippingSubdivisionName>California</shippingSubdivisionName>
 <status>2</status>
 <subTotalAmount>10.00</subTotalAmount>
 <subTotalAmountWithTax>10.00</subTotalAmountWithTax>
 <taxAmount1>0.00</taxAmount1>
 <taxAmount2>0.00</taxAmount2>
 <taxAmount3>0.00</taxAmount3>
 <taxAmount4>0.00</taxAmount4>
 <taxAmount5>0.00</taxAmount5>
 <taxDiscountAmount>0</taxDiscountAmount>
 <totalAmount>20.00</totalAmount>
 <totalHandlingAmount>9.00</totalHandlingAmount>
 <totalHandlingAmountWithTax>9.00</totalHandlingAmountWithTax>
 <totalSalesOrderDetailDiscountAmount>0.00</totalSalesOrderDetailDiscountAmount>
 <totalSavingsAmount>0.00</totalSavingsAmount>
 <totalShippingAmount>1.00</totalShippingAmount>
 <totalShippingAmountWithTax>1.00</totalShippingAmountWithTax>
 <userHostAddress>127.0.0.1</userHostAddress>
 <warehouse>
 <city>Beverley Hills</city>
 <countryCode>US</countryCode>
 <email></email>
 <phone></phone>
 <postalCode>90210</postalCode>
 <street>1 Melrose</street>
 <subdivisionCode>US-CA</subdivisionCode>
 </warehouse>
 <warehouseID>1</warehouseID>
 </salesOrder>
 <user>
 <email>user@address.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <profile>

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

 <profileProperties>
 <Biography></Biography>
 <Cell></Cell>
 <City>Beverley Hills</City>
 <Country>United States</Country>
 <Fax></Fax>
 <FirstName>John</FirstName>
 <IM></IM>
 <LastName>Doe</LastName>
 <MiddleName></MiddleName>
 <Photo></Photo>
 <PostalCode>90210</PostalCode>
 <PreferredLocale>en-US</PreferredLocale>
 <Prefix></Prefix>
 <Region>California</Region>
 <Street>1 Melrose</Street>
 <Suffix></Suffix>
 <Telephone>111-111-1111</Telephone>
 <TimeZone>0</TimeZone>
 <Unit></Unit>
 <Website></Website>
 </profileProperties>
 </profile>
 <roles>
 <role>Role1</role>
 <role>Role2</role>
 </roles>
 <userHostAddress>127.0.0.1</userHostAddress>
 <userID>1</userID>
 <username>host</username>
 </user>
 <vouchers>
 <voucher>
 <activeAmount>10.00</activeAmount>
 <amount>10.0000</amount>
 <code>VKMO2XTJKPZUNGPB</code>
 <formattedActiveAmount>$10.00</formattedActiveAmount>
 <initialAmount>10.0000</initialAmount>
 <issueDate>2013-10-23T10:17:34</issueDate>
 <status>2</status>
 <voucherDefinitionID>4</voucherDefinitionID>
 </voucher>
 </vouchers>
</in>

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

How to troubleshoot email not receiving
Most email related problems have to do with improper configuration. Please ensure you have followed the steps below:

1. Verify you have a valid SMTP server settings under DNN Host > Host Settings page. Try sending an email to an
external email address (e.g. Hotmail or Gmail account). If that fails, try sending to your local address (e.g.
john@mydomain.com) in case your SMTP is unable to resolve or send to external addresses. Always make sure to
check your spam box in case the email falls into the trap.

2. Verify you have configured a valid email recipient and sender addresses under the Storefront's Configuration >
General menu.

3. Make sure you enabled the appropriate order alert, receipt or invoice under Configuration >
Communication menu.

4. If you customized your email templates, make sure the tags are matching and properly closed. Try resetting to the
default template and resend the email. If you're using a Custom rule for your template, make sure your email
templates are valid by performing a Run test on the template first. It should return a success message. Anytime you
suspect a typo error, restore using the default email template to ensure it's not a template issue that is uncaught by
the screen test.

5. Verify your site's Admin > Event viewer page for any email errors. You can always make a test purchase under
your own account and test sending emails to yourself. If you need to resend a receipt or invoice, you can also force
the system to send email from the Sales > Orders menu in the action button.

How to make HTML editor behave
If you're editing your email templates using the HTML editor on your site, you may want to change the editor settings to
prevent the designer from over aggressively modifying your HTML code.

1. Login as the superuser and go to the Host > HTML Editor Manager page.

2. Select Everyone and uncheck the RemoveScripts and MakeURLsAbsolute settings under Content Filters.

3. Also, select the Enable Relative URL Links checkbox to allow it.

4. Repeat for Users and Host if you have multiple configurations.

Reports
Revindex Storefront comes with several useful standard reports out of the box such as:

Low product inventory report

Top selling products report

Top paying customers report

Daily sales activity report

Monthly sales activity report

Payment reconciliation report

Coupon usage report

and many more...

Many of the reports can be filtered by predefined criteria and may display colorful graphs.

You can also create your own custom reports. For security reasons, only the Host superuser account can create or edit
reports.

How to create custom reports
You need to be logged in as a Host superuser to edit or create new reports. Standard reports cannot be edited.

1. The easiest way is to clone one of the existing reports and make the modifications. Alternatively, you can click on the
Add new to create a new custom report from blank.

2. Give your report a name and optionally a description. Select the report group to determine where the report will
show up under the Catalog, Sales, People or Marketing menu.

3. Enter one or more SQL SELECT statements in the Data source tab. You have full access to all the standard SQL
commands including variables and temp tables. If you require any input parameters you can use the special
@param placeholders. For example:

SELECT col1, col2 FROM MyTable WHERE col3 = @Param1 AND col4 = @Param2

SELECT col5, col6 FROM MyTable2 WHERE col8 = @Param1 AND col9 = @Param2

4. Add the matching input parameters required by your data source in the Parameter tab. The names must match
exactly your @Param placeholder names. Parameters can be a form input or one of the predefined variables.

5. In the Visualizer tab, enter the HTML to render the report. The HTML can contain XSL Tokens
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section) to extract
the returned values from your SQL execution. Each SQL SELECT statement, will generate a data table under the
dataSet node. For example, the XML input below is generate from your data source. Your XSL tokens can be used
to extract the result set to render the HTML:

<in>
 <dataSet>
 <dataTable>
 <dataRow>
 <col1 dataType="int">...</col1>
 <col2 dataType="nvarchar">...</col2>
 </dataRow>
 <dataRow>
 <col1 dataType="int">...</col1>
 <col2 dataType="nvarchar">...</col2>
 </dataRow>
 <dataTable>
 <dataTable>
 <dataRow>
 <col5 dataType="boolean">...</col1>
 <col5 dataType="nvarchar">...</col2>
 </dataRow>
 <dataRow>
 <col4 dataType="boolean">...</col1>
 <col5 dataType="nvarchar">...</col2>
 </dataRow>
 <dataTable>
 </dataSet>
 </in>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/xsl-tokens/rvdwkpvm/section

You can also include colorful graphics using Google charts (https://developers.google.com/chart/) simply by
generating the correct Javascript statements needed to render the charts.

https://developers.google.com/chart/

How to export data from custom report
For many reasons, you may occasionally want to export the data out from the custom reports into a tabular or spreadsheet
format for manipulation.

Custom reports are built using HTML and XSL tokens. You can render the data separately into a Javascript string that is
hidden from the normal view. Simply include a button to retrieve the data to CSV and send to the window object using
Javascript. For example, the following Javascript code can be used to trigger the download of the CSV file.

You can find many examples online on how to use Javascript to export CSV. Some examples are shown here:

Small JavaScript Library To Export JSON Data To CSV File – CSV-Export (https://www.cssscript.com/small-javascript-
library-to-export-json-data-to-csv-file-csv-export/)

StackOverflow: Export html table to csv (https://stackoverflow.com/questions/15547198/export-html-table-to-csv)

<script>
function downloadFile(fileName, data) {

 var a = document.createElement("a");
 if (navigator.msSaveBlob) {
 navigator.msSaveBlob(new Blob([data], {
 type: "text/csv"
 }), fileName);
 } else if ('download' in a) {
 a.href = 'data:text/csv;charset=UTF-8,' + encodeURIComponent(data);
 a.download = fileName;
 document.body.appendChild(a);
 setTimeout(function() {
 a.click();
 document.body.removeChild(a);
 }, 100);
 } else if (document.execCommand) {
 var oWin = window.open("about:blank", "_blank");
 oWin.document.write(data);
 oWin.document.close();
 oWin.document.execCommand('SaveAs', true, fileName);
 oWin.close();
 }
}

function exportCsv() {
 var data = '"Order","Status"\r\n';
 {xsl:for-each select="/in/dataSet/dataTable/dataRow" }
 data += '"{xsl:value-of select="SalesOrderNumber" /}","{xsl:value-of select="Status" /}"\r\n';
 {/xsl:for-each}

 downloadFile('Orders.csv', data);
}
</script>
<p><button class="btn btn-link" type="button" onclick="exportCsv()" style="float: right">Export</button></p>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

https://www.cssscript.com/small-javascript-library-to-export-json-data-to-csv-file-csv-export/
https://stackoverflow.com/questions/15547198/export-html-table-to-csv

Rewards points
As a merchant, you typically want to build loyal and repeat customers over time. A great way is to reward your customers
with loyalty points for purchases made at your store. The customer can then redeem these accumulated points to buy
more products and services from you.

You must first enable the Rewards points feature under Configuration > General. Once enabled, the rewards point can
be configured from the Configuration > Rewards point screen. Once you enable rewards points, your product detail and
checkout pages will show the number of points awarded to the customer for their purchase. When configuring the rewards
point program, you need to understand the differences between the action of rewarding and redeeming. The merchant
rewards the points to the customer (e.g. 1 point for every $10 spent), whereas the customer redeems the points for
purchases (e.g. if each point is worth $0.01, then 1000 points equals to $10 of money that can be used to pay during
checkout).

Monetary value of each point - This the actual value of each point. When the customer is at the checkout page, he
can use his points to pay. E.g. you can enter 0.01, which means 1 point equals to $0.01 of your currency.

Reward points for orders - Enable this if you want to reward customers with points for their purchases. Only product
variants that have the rewards point enabled will qualify.

Reward points min order amount - If a minimum order amount needs to be attained to be rewarded points.

Points to award per order unit amount - The number of points to award for each currency unit spent on checkout
for qualified products based on the order amount after discounts, but before shipping, handling and taxes. If the rate is
equal to 1, then 1 point is awarded for each dollar spent. This rate can also be fractional to encourage customer to
spend more. If the rate is 0.1, then 1 point is awarded for each 10 dollars spent, but if the customer spent 12 dollars,
only 1 point is awarded.

Reward point delay - The number of days to delay rewarding the points for an order purchased. This is a security
measure to protect the merchant from fraudulent customers who purchase products solely to earn points and
returning the products after the points have been redeemed. For example, if you have a 30 days refund policy, you
may want to set the delay equal to 30 days.

Min points to allow redeeming - The minimum number of points the customer must have to be allowed to redeem
for purchases.

Points expiration - If the points should expire after the period of inactivity

You can decide if certain products do not participate in the rewards point program by unchecking the Enable rewards
point checkbox on the product variant. You can also enter a custom points value if you want to reward a different number
of points for the purchase of a particular product. If not specified, the Storefront will calculate the number of points to award
based on the selling price of the product.

If the rewards point program is enabled, points are rewarded when the order has reached the Completed status or the
payment has reached the Paid status. By default, for security purposes, orders and payments immediately after checkout
are never put in those states. You can use the Place order action rule to automatically set the order to Completed and
payment to Paid statuses if needed. If a delay is set, the points will automatically be rewarded after the elapsed time has
passed. Please see How to force order and payment status (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section) for more information on changing
order status.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section

You can modify the current number of points belonging to the customer from the Sales > Rewards points screen. You can
also modify the number of points earned by the order from the Sales > Orders screen.

The customer can view their current points balance from the Manage Rewards Point module control. This will show the
number of points active and pending as well as any expiry date.

Points internally have an intrinsic monetary value and are treated in similar way as any other form of payment. To allow
customers to redeem their points, you must therefore enable Rewards Points from the Configuration > Payment menu.

Analytics
Revindex Storefront supports Web site tracking of ecommerce transactions using Google Analytics
(http://www.google.ca/analytics/). This feature allows you to track your site traffic and report on products purchased and
order amounts.

You must first have a valid Google Analytics account. You also need to enable ecommerce tracking:

1. Click the Admin tab at the top right of any screen in Google Analytics.

2. From the Account Administration screen, click the name of the account and then the name of the property that
has the profile you want to enable Ecommerce Tracking for.

3. Use the Profile drop down menu to select the profile you want. Click the Profile Settings tab. Under the E-
Commerce Settings section, select Yes, an E-Commerce Site/App and save.

You also need to enable Google Analytics tracking under your Web site's Admin > Google Analytics page. Enter the
Google Analytics Web Property ID (UA-XXXXX-Y) for your Tracking ID value. This will enable analytics tracking for all
your Web pages.

Finally, to enable ecommerce transaction tracking, you need to enable the Analytics feature under Configuration >
General. You can then enable the Google Analytics under the Storefront's Configuration > Analytics menu.

If you have everything properly setup, the system will automatically inject the Google Analytics tracking code in the
confirmation page after checkout. You should find a snippet Javascript code that resembles "_gaq.push('_addTrans' " or

ga('ecommerce:addTransaction', ... in your HTML source.

Google Universal Analytics

Google recently launched a new analytics engine and is recommending all users to move to the new platform. The
Storefront is capable of emitting code that supports both the Classic and new Universal Analytics code. To enable the new
Google Universal Analytics code, you must update the code contained in your SiteAnalytics.config file located under your
Web site's root folder or perform the update from the Host > Configuration Manager page (select "SiteAnalytics.config").

<?xml version="1.0" encoding="utf-8" ?>
<AnalyticsEngineConfig>
 <Engines>
 <AnalyticsEngine>
 <EngineType>DotNetNuke.Services.Analytics.GoogleAnalyticsEngine, DotNetNuke</EngineType>
 <ElementId>Head</ElementId>
 <InjectTop>False</InjectTop>
 <ScriptTemplate>
 <![CDATA[

 <script type="text/javascript">

 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 (i[r].q=i[r].q||).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', '[TRACKING_ID]');
 ga('send', 'pageview');

 </script>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

http://www.google.ca/analytics/

]]>
 </ScriptTemplate>
 </AnalyticsEngine>
 </Engines>
</AnalyticsEngineConfig>

22
23
24
25
26

Sitemap
Sitemap is a special XML file that provides explicit URLs to search engine crawlers to help index your site. A good sitemap
file plays an important role in your overall SEO success. It should include all your public Web pages as well as products
you sell.

Revindex Storefront automatically includes all your published products into your portal sitemap file. There is nothing to
configure. You can verify your sitemap under your DNN Admin > Search Engine Sitemap page. Sitemap files are
cached, therefore, you may need to clear the cache data to see the changes the first time.

Affiliates
Revindex Storefront will automatically track any online sales referrals configured in your DNN system allowing you to
eventually pay out commissions to your affiliate partners on pay-for-performance basis. Affiliates are a great way to
generate more sales easily and cost effectively.

The Storefront integrates with DNN standard affiliate management system making it possible to track affiliate referrals
arriving on any of your Web pages. For example, your affiliate partner may send customers to your home page or to a
special promotion page you created. In both cases, your affiliate will be correctly tracked and credited for the completed
sale.

To configure the affiliate tracking, please follow these steps listed below to create your vendor record. A vendor is any
partner, company or individual who has a working relationship with your business.

1. You must first install the DNN Vendors module
(https://github.com/DNNCommunity/DNN.Vendors/tree/master/src/Dnn.Modules.Vendors/Install) if you haven't
already installed it.

2. On your Web site, go to the DNN Admin > Vendors page.

3. Click on Add New Vendor.

4. Enter all the required information for your new vendor.

5. Click Update.

6. Select the vendor you just created.

7. Towards the bottom, under the Affiliate Referrals section, click on Add New Affiliate.

8. Click Update.

9. Select the newly created affiliate.

10. Click on Send Notification. The vendor will receive an email with a link that can be used to track his referrals to
your site.

The vendor is now your affiliate partner. He can use the link to redirect visitors to your site and earn sales commission. The
email containing the link has an embedded Affiliate ID that looks like this:

http://site.com/Default.aspx?AffiliateId=1

Your affiliate partner can refer the visitor to any page on your site as long as the AffiliateID parameter is attached to the
URL. For example, to direct the visitor to one of your product pages, you can attach the AffiliateID parameter to the URL as
shown:

http://site.com/rvdsfpid/coffee-40/language/Product.aspx?AffiliateID=1

https://github.com/DNNCommunity/DNN.Vendors/tree/master/src/Dnn.Modules.Vendors/Install

Once the AffiliateID parameter is detected by DNN, the visitor can freely visit any other page and will be tracked for the
duration determined by your DNN site. Any sales completed by the visitor is now associated with the Affiliate ID.

Commissions can be paid out periodically at your own discretion via PayPal, check, wire transfer, etc. You can view the
"Affiliate performance" report from the Storefront Marketing > Reports menu to find out how many sales orders and the
total amount (excluding shipping, handling and taxes) are attributed to the vendor. You can simply multiply the number by
your commission rate to determine the commission owed to your vendor. You can also create custom reports under
Configuration > Reports menu to get more detailed information about your affiliates or automatically calculate the
commissions if needed. For more information, please see How to create custom reports
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-custom-
reports/rvdwkpvm/section).

For more advanced affiliate tracking and commission, Revindex Storefront is also integrated with STP Affiliate Manager
that you can purchase separately. For more information, please visit STP Affiliate Manager
(http://store.dnnsoftware.com/home/product-details/dnn-affiliate-manager-32/r/D8B7B587C7D34AC19829) product site.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-custom-reports/rvdwkpvm/section
http://store.dnnsoftware.com/home/product-details/dnn-affiliate-manager-32/r/D8B7B587C7D34AC19829

Address validation
The Storefront supports address validation using real-time providers (e.g. Avalara). Once configured, any address entered
by the end user will be validated and automatically corrected to a standard format. For example, depending on the provider
implementation, the address "1 jones E, raleihg, North Carolina, 27601, United States" entered will validate and
automatically be corrected to "1 E Jones St, Raleigh, North Carolina, 27601-1021, United States". Address validation can
help ensure addresses are deliverable and avoid shipping losses. It is also a great way to ensure your data is clean and
ready for any future business intelligence reports you may run that require accurate address information on file.

You must first enable the Address validation feature under Configuration > General. Once enabled, you can configure the use

of address validation under Configuration > Address validation. Make sure to enter the account credentials by clicking on the

edit icon for your selected provider.

Please contact us if you don't see the address validation provider you like to use.

Avalara
Avalara (http://www.avalara.com/) AvaTax provides real-time address validation for U.S and Canadian addresses. The
following fields are required:

1. Account number

2. License key

You can configure how the address validation should work under Configuration > Address validation. Click Add new to create

a new address validation method for the desired country and set the gateway to "AvaTax".

Click on the edit icon to enter the account credentials for your provider. Click on Test connection to make sure your

credentials work.

The system will attempt to validate the address for the selected country and if a valid match is found, it will automatically
standardize the address format. The severity level determines how to treat an invalid address that cannot be automatically
corrected by the system. High - Require user to correct the invalid address before proceeding further. Normal - Warn user
of the invalid address, but allow the user to proceed. Low - Invalid address is silently accepted.

http://www.avalara.com/

Fraud risk
Revindex Storefront can help increase your merchant profits by reducing chargebacks and improving operation efficiency using

powerful fraud protection technology. If enabled, the Storefront will display the fraud score for every order completed through

checkout. The fraud score ranges between (high risk) 0 to 100 (low risk) and is color coded for low, moderate and high risk. As a

merchant, you'll be able to confidently reject suspicious orders before shipping and avoid incurring expensive losses to your

business.

The Storefront supports several different fraud scoring providers. These providers maintain a large aggregate of blacklist
data from multiple reliable sources. Using sophisticated algorithm and statistics, they're able to filter out suspicious
transactions by inspecting the IP location, email, credit card numbers and a host of other inputs that are fraudulent but
would otherwise look normal to an untrained eye.

The more you use these providers, the better it gets as their system will automatically tune and learn from the aggregate
data collected from your business transactions. Since one aspect of fraud detection is often associated with the customer's
IP location, the Storefront has automatic built-in mechanism to avoid querying the fraud score for orders placed by employees of

your store. For example, as a store operator, you may occasionally place an order on behalf of the customer over the phone by

logging into the customer's account. The Storefront will automatically disable fraud score for this order to avoid penalizing the

customer because your IP address would have been registered as different and negatively impact the customer's future risk score.

Therefore, if you're just setting up and want to test the fraud score feature, make sure you test it with a different browser than the

one running the Storefront console or clear your browser cache first.

You must first enable the Risk feature under Configuration > General. Once enabled, you can enable the fraud protection under

Configuration > Risk menu. Remember to click the edit icon to provide the account credentials for your selected provider.

Please contact us if you don't see the fraud screening provider you like to use.

FraudLabs Pro
FraudLabs Pro (http://fraudlabspro.com/) provides a cost effective fraud screening service with the first 500 queries per
month are free. Please contact the provider for more pricing information. The following fields are required:

1. API Key

http://fraudlabspro.com/

Sift Science
Sift Science (https://siftscience.com/) provides an impressive and affordable fraud screening service with the first 10,000
transactions per month are free. Please contact the provider for more pricing information. The following fields are required:

1. API Key

2. Javascript snippet key

https://siftscience.com/

Channels
A good way to increase your sales is to list your products for sale on popular sites like eBay, etc. The Storefront makes it
easy for you to publish and manage your products on 3rd party channels all in a central place saving you time and
avoiding double entry mistakes.

You must first enable Channel feature under Configuration > General settings. Once enabled, you can configure the
channel under Configuration > Channels menu. Make sure to enter the necessary application keys by clicking on the edit
icon for the appropriate channels.

Please read How to sell on eBay (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-sell-
on-ebay/rvdwkpvm/section) to see how easy it is to publish a product to a 3rd party channel.

Please contact us if you don't see the channel provider you like to use.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-sell-on-ebay/rvdwkpvm/section

eBay
eBay (http://www.ebay.com/) is the world's largest auction marketplace selling to millions of users worldwide. The following
fields are required:

Dev ID

App ID

Cert ID

Auth token

You must first register an eBay seller account (http://pages.ebay.com/help/sell/sell-getstarted.html). Once registered, you
then must also register an account with eBay Developer Program (http://developer.ebay.com/). Check your email and follow

the instructions to activate your account.

From your developer account, you can get your production application keys from the My Account page. You can perform tests

by generating sandbox keys instead.

To obtain your auth tokens, click on Get a User Token under the tools panel. Select the desired environment and key set to

generate your token. You may be directed to sign into your seller account. Once logged in, click on I Agree to allow eBay to

connect with the Storefront application. You will be directed to a page to obtain your user tokens. Click on Save Token to

complete the step.

Currently only a limited number of eBay features are supported by the Storefront. Please perform your own testing first to ensure

it meets your needs. Please note eBay may charge additional fees for enhance listings (e.g. list on more than two categories,

etc.):

Support eBay U.S and Canada only. No eBay Motors.

Limited to certain basic product types and categories (e.g. gift certificates, downloadable products, donations, etc. are
not supported).

Multiple variants must be published separately.

Limited to certain basic product fields are published to eBay.

Limited to certain basic product fields are update-able on eBay.

Support certain shipping services. Country restrictions may apply.

Support a limited number of payment methods (credit card, PayPal, etc.)

U.S dollar currency only.

Product inventory is not tracked.

http://www.ebay.com/
http://pages.ebay.com/help/sell/sell-getstarted.html
http://developer.ebay.com/

Accounting
The Storefront can sync customers, products, orders and payments to various accounting software (e.g. QuickBooks,
Xero) so you don't have to perform double entry into your accounting and bookkeeping system. Please note you may
require purchasing additional license or 3rd party software for these features to work.

Please contact us if you don't see an accounting provider you like to use.

QuickBooks
You can sync customers, products and orders between the Storefront and QuickBooks (Online or Desktop) using a 3rd
party connector sold by JMA Technologies (http://www.jmawebtechstore.com/?affiliateid=6). Please contact JMA
Technologies for more information about their QuickBooks connector use with Revindex Storefront.

http://www.jmawebtechstore.com/?affiliateid=6

Xero
Xero (https://www.xero.com) is an online accounting and bookkeeping software that helps small businesses keep track of
their invoices and payments. The following fields are required. Please read below for information on how to obtain the
certificate file and register your application with Xero first.

1. Consumer Key - the consumer key from Xero API.

2. Consumer Secret - the consumer secret from Xero API.

3. Certificate file - Enter the full physical path to the pfx certificate file on your system. The file path should be
readable by the calling application (e.g. C:\Temp\public_privatekey.pfx file).

Generate private/public key pair

1. Download and install free OpenSSL (http://slproweb.com/products/Win32OpenSSL.html) utility.

2. From the command prompt, go to the OpenSSL \bin folder where you installed or extracted the software.

3. Run the following command to set your OpenSSL configuration path:

set OPENSSL_CONF=c:\<OpenSSL folder path>\bin\openssl.cfg

4. Run the following command to generate the private key:

openssl genrsa -out privatekey.pem 1024

5. Run the following command to generate the public key using the previously generated private key. Enter a large
number of days if you want to avoid changing keys frequently:

openssl req -newkey rsa:1024 -x509 -key privatekey.pem -out publickey.cer -days 3650

6. Run the following command to export your public and private key into a single pfx file. Leave the password field
blank when prompted.

openssl pkcs12 -export -out public_privatekey.pfx -inkey privatekey.pem -in publickey.cer

Set up a private application in Xero

1. Login to Xero API (https://api.xero.com)

2. Under My Applications tab, add a new application.

3. Select "Private". Give your application a name.

4. Paste the content of your public key that you generated earlier (publickey.cer file).

https://www.xero.com/
http://slproweb.com/products/Win32OpenSSL.html
https://api.xero.com/

5. Agree to the terms and Save.

6. Copy the Consumer Key and Consumer Secret tokens.

Chart of Account

Like most accounting software, Xero allows you to create different accounts to track various activities. Orders and
payments sent to Xero need to be associated with accounts in your Xero's Chart of Accounts. It's very important that the
tax rate associated with the Xero account needs to match the tax rate setup in the Storefront unless you allow the sync to
override the tax.

Handling account - Used to track handling amount

Payment account - Used to track payments made to an order

Sales account - Used to track sales order details

Shipping account - Used to track shipping amount

Limitations

Xero API is limited to 60 requests/sec and a maximum of 1000 requests/day.

One-way sync of Completed orders from Storefront to Xero.

After initial sync, changes made to an order will not be synced to Xero. Only order cancellations will be updated once
to Xero. You cannot undo a cancellation.

Xero base currency should match primary currency in Storefront.

If OverrideTax is false, the tax rate set per account must accurately match the tax calculation in the Storefront.

No product inventory sync.

Catalog

Categories
Categories allow you to group the products for sale making it easier for your users to browse your shopping cart. Revindex
Storefront supports unlimited number of multi-level categories. Individual product can be assigned to one or more
categories. You can add new categories from the Catalog > Categories menu. Click Add new to create a new category
and give it a name. Select if this category has a parent category to create a sub-level category.

Each category can have a custom Display template that changes the look-and-feel of the Product List page. You can
also store additional information about the category using the Extension field and XML data.

Category availability
The category availability determines if the category can be displayed under what conditions. You must first enable the
Availability feature under Configuration > Category menu.

The Storefront comes with several predefined rules such as allowing a category to be shown based on user location or
security role.

The category availability rule can also use XSL transform to determine whether this category is available. For example,
you may restrict the category to wholesale members on your site with a certain security role. The expected output should
return "true" to indicate this product is available for sale under the input conditions, otherwise "false" if disallowed.

You can store additional information about the category using the Extension field and XML data. The extension
information automatically becomes available for query in your business rules.

The Storefront comes with several pre-defined rules that you can simply modify the values without needing to know XSL.
 To learn more about XSL, please see the XSL Transform section.

Distributors
If you source your products from distributors, you can keep track of them by creating a distributor entry in the system.

You must first enable the Distributor feature under Configuration > General. Once enabled, you can manage distributors
from the Catalog > Distributors menu. Click Add New and give it a name. You can store additional information about the

distributor using the Extension field and XML data. Once saved, you can now assign this new distributor to your individual

products.

Manufacturers
You can keep track of manufacturers of your product by creating a manufacturer entry in the system.

You must first enable the Manufacturer feature under Configuration > General. Once enabled, you can manage
manufacturer from the Catalog > Manufacturers menu. Click Add new and give it a name. You can store additional
information about the manufacturer using the Extension field and XML data. Once saved, you can now assign this
new manufacturer to your individual products. Associating a product variant to a manufacturer will allow customers to
quickly browse products at your store by manufacturers.

Warehouses
For certain businesses, the products may not be kept and shipped out from the same physical address as your store.
These products are kept at one or many warehouses for logistic reasons. For example, you sell flowers that are held in the
East and West coast warehouses to reduce shipping cost and delivery time. Drop-shipping is another common practice
where the physical product is shipped directly from the manufacturer's address and not from your store. Your shipping rule
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/shipping-rate/rvdwkpvm/section) can take into
account the warehouse location and charge a different amount based on the transit distance. Similarly, your shipping
availability rule (http://www.revindex.com/Resources/KnowledgeBase/RevindexStorefront/tabid/174/rvdwktid/warehouses-
418/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/shipping-rate/rvdwkpvm/section) can
determine if only certain shipping methods are available depending on the warehouse origin (e.g. your East coast
warehouse can ship by UPS only).

Furthermore, the shipping origin has important tax implications. In almost every U.S state, you are liable for tax collection
based on where the product is shipped from (warehouse address, not your business address) and where it is ship to.
Your tax rule (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/tax-
methods/rvdwkpvm/section) can charge a different tax rate based on the warehouse origin. Please see Order splitting
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/order-splitting/rvdwkpvm/section) for more
information on how orders are treated by warehouse.

The Storefront handles warehouse information to help optimize your shipping cost and delivery time while ensuring you are
compliant with tax laws. It will also track the inventory by warehouse so you know exactly how many products are available
in which warehouse at all times. You must first enable the Warehouse feature under Configuration > General. Please
see Warehouse (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/warehouse/rvdwkpvm/section) for more information on associating your products to your warehouses.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/shipping-rate/rvdwkpvm/section
http://www.revindex.com/Resources/KnowledgeBase/RevindexStorefront/tabid/174/rvdwktid/warehouses-418/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/shipping-rate/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/tax-methods/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/order-splitting/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/warehouse/rvdwkpvm/section

Product attributes
Product attributes are used to define the characteristic or feature of a product (e.g. power rating, size, etc.) and are
displayed in the Specifications tab of a product detail.

Product attributes are also displayed in the Product Comparison module control. See Product Comparison
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-comparison/rvdwkpvm/section) for
more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-comparison/rvdwkpvm/section

It is also used in the Product Filter module control for refining results. See
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/) for more info.

You must first enable the Product attributes feature under Configuration > Product. Once enabled, you can define
product attributes under the Catalog > Attribute groups and Catalog > Attribute definitions menus.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/

Groups
You can optionally create groups under Catalog > Attribute groups to classify similar attributes to make it easier for your
customers to view the data. For example, if you define the attributes "Weight", "Height" and "Depth", you may want to
classify these attributes under the "Dimensions" group.

Definitions
Product attributes need to be defined first before they can be added to a product. You can create definitions under the
Catalog > Attributes definitions menu.

You can classify the new attribute definition to one of the groups you created earlier under Catalog > Attributes groups.

It's important to pick the correct Attribute type (Boolean, Decimal, etc.) as it determines how it will be used in product
comparison and for filtering products. For example, if you sell televisions, you may have an attribute definition called "HD
Ready" and it would take the Boolean attribute type because the possible values are either Yes or No. Whereas, you can
have another definition for "Weight" and it would take the Decimal attribute type because the weight can be any number.

You can also set the attribute definition to be Published if it should be shown to the customer, Comparable if it should be
used in product comparison or Filterable if it should be used to filter against the product list.

Products
Products (physical, virtual or services) are representation of items that are listed for sale on your store. For example, it
could be shoes, downloadable e-book or perhaps a financial service you sell.

Do not think of a product is equal to exactly one physical object you sell. In fact, a product can be a bundle of items or can
have many variations (e.g. Black, brown and white shoes can be represented as a single product even though there are 3
physical objects). Understanding that a product is simply a representation of the object(s) for sale will help you sell more
because you will optimize your store to display products in tune with your customer's expectation (e.g. Normal customer
behavior is to browse for the shoe they like first and then make conscious decision to pick the available colors).

Revindex Storefront is optimized to help you sell more using state-of the art features like SEO best practices, variants,
unlimited images, product relationship, attributes, etc. that are only found in top e-commerce Web sites.

Products are managed from the Catalog > Products menu. You can search for an existing product or click Add new to
create a new product. Each product can have a custom Display template that changes the look-and-feel of the Product
Detail page.

Attributes
You must first enable the Product attributes feature under Configuration > Product. Once enabled, you can set product
attribute values that were defined earlier in Catalog > Attribute definitions menu.

The product attributes will appear in the Specifications tab in the product detail as well as in product comparison and filter.
Please see Product attributes (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-product-
attributes/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-product-attributes/rvdwkpvm/section

Gallery Images
Each product can show a thumbnail, multiple display and multiple detailed-size images. There is no limit to the number of
product images. The different size formats are used in the product pages:

Detailed - the detailed image shown usually on a pop-up window when the Display image is clicked to show high
resolution details of the product.

Display - the primary image shown in the product detail page.

Tile - the icon size image shown underneath the Display image to allow the user to switch between images for
viewing.

Thumbnail - the image shown on the product list page.

You should ensure the Display order number is the same for the set of related images. The same number is how the
system knows the images of different formats belong to the same picture and is needed for the zoom effect to work
correctly. For example, if you uploaded a detailed image and you set the Display order value to 1000. If later, you upload
the thumbnail and display formats, you want to make sure the Display order number is also set to 1000. However, the
next set of images should have a different Display order value of 1001.

When you upload an image, the system will automatically resize the image to the pixel width set under Configuration >
Gallery settings. If you want to avoid the resize operation for image quality reasons, you should upload the image with the
exact width configured in your settings. We recommend using PNG over GIF for everyday pictures and using JPEG for
complex photographs. If you selected multiple formats in the checkboxes, the system will attempt to automatically resize
and generate the other image formats for you. To get the best result when generating other formats automatically, you
should upload the largest image you have to avoid losing image quality on resize.

Please note setting the gallery dimensions under Configuration > Gallery settings does not necessarily mean your
images will appear at those configured sizes. Instead, the actual size of the image displayed on the screen depends on
your display template design. This is especially true when designing for modern fluid and mobile templates. Suppose you

have the following gallery settings:

"Detailed" image size at 600 px

"Display" image size at 300 px

"Thumbnail" image size at 100 px.

Your Product Detail display template and CSS might still force the "Display" image to stretch to 350 px to fill the
surrounding space or shrink to 200 px when viewed on a mobile device. The reason you still want to configure the
appropriate gallery dimensions is to ensure the browser is downloading a smaller image (300 px) instead of the large 600
px image.

If you decide later to change the gallery size in the configuration, you will need to re-upload the affected images. Because
of storage reasons, the Storefront does not keep the original images needed to perform a resize. However, you can use
the Import/Export routine (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-and-
export/rvdwkpvm/section) to bulk upload the original images and the system will bulk resize them for you.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-and-export/rvdwkpvm/section

SEO
Revindex Storefront is highly optimized for SEO (search engine optimization) so you benefit from the free traffic coming
from natural search results.

URL Keywords

According to Google, keywords in the URL help improve your SEO ranking because search engines will index these words
with high relevancy. Furthermore, the URL itself is displayed in the search results page and is usually displayed
prominently on the top of the browser can provide human users with useful clues about the page’s content.

With the advanced URL provider enabled, the Storefront will generate a nice clean URL such as
http://site.com/product/shoe Even if you don't enable the advanced URL provider, you can still get a nice URL that is

amazingly SEO friendly like http://site.com/product/rvdsfpid/shoe-3

By default, the Storefront will use your product name to feed keywords in the URL. You can override the keywords without

changing your product name by specifying the URL Name value under the SEO tab. For example, you may want to improve your

SEO ranking by adding more searchable keywords "genuine leather shoe" without changing the product name. This will produce

the URL http://site.com/product/genuine-leather-shoe and is more meaningful for users searching for high quality apparel

than just any kind of shoe.

Just like your entire DNN site is localizable, the keywords in the URL are also localizable. Google recommends

(https://support.google.com/webmasters/answer/182192?hl=en) that you make sure each language version is easily

discoverable by keeping the content for each language on separate URLs. For example, the words "genuine leather shoe" can

be localized to "soulier en cuir veritable" since those will be keywords searched by french users. This will in turn generate the

URL http://site.com/produit/soulier-en-cuir-veritable when users visit your site in French.

When using advanced URL provider, the product, category, distributor and manufacturer pages are entirely driven by keywords in

the URL. Therefore, it is important that you provide a unique set of keywords either in your product name or URL name so that

the Storefront can generate a nice clean unique URL that doesn't collide with other generated URLs. Your URL names must not

conflict with any URL name already used in your product, category, manufacturer or distributor catalog.

https://support.google.com/webmasters/answer/182192?hl=en

Similarly, if your product has variations, you can specify URL names so that the system generates the

URL http://site.com/product/genuine-leather-shoe/brown for brown shoes and http://site.com/product/genuine-leather-
shoe/black for black shoes, respectively.

Please read How advanced URL provider works (http://www.revindex.com/Resources/Knowledge-Base/Revindex-

Storefront/how-advanced-url-provider-works/rvdwkpvm/section) for more information.

Canonical URL

In any shopping site, there's usually more than one way to get to the same product. A customer can browse by category,
search engine or simply visiting a link from a blog or social media. Each channel may cause the URL to be slightly different
because of the additional data being passed in the URL. For example, if you navigated from the category "Apparel", you
would get the URL http://site.com/product/apparel/genuine-leather-shoe. To avoid diluting your SEO value (also known
as duplicate page content), the Storefront automatically generates canonical information on the page to tell search engines
that it should index the one and only real URL that is http://site.com/product/genuine-leather-shoe no matter how many
different URLs you have may have to get to the same page.

META

As the merchant, you can also add META keywords and description to the page to give search bots more indexing hints.
These values are localizable so you can present different keywords in different languages and earn more SEO points.

Page title

You can also override the page title and provide your own SEO optimized title. Just like your entire DNN site is localizable,
the page title is localizable so you can print different titles for different languages. For a French customer, the English title
"Genuine Leather Shoe" doesn't mean much and will prefer to read "Soulier en Cuir Veritable" when browsing your product
page.

Clean HTML

Every standard display template generates nice clean HTML so search bots don't miss out on crucial text and links even if
your products are located many page numbers away or in a deeply nested categories.

Sitemap

The Storefront also generate complete sitemap of your products that is picked up by search engines. Please see Sitemap
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/sitemap/rvdwkpvm/section) for more
information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-advanced-url-provider-works/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/sitemap/rvdwkpvm/section

Product Availability
The product availability determines if the product is available for purchase. You must first enable the Product availability
feature under Configuration > Product. Once enabled, you'll be able to add your own availability rules. The Storefront
comes with several predefined rules such as allowing a product to be purchased based on user location or security role.

The product availability rule can also use XSL transform to determine whether this product is available for sale. For
example, you may restrict the product to wholesale members on your site with a certain security role. The expected output
should return "true" to indicate this product is available for sale under the input conditions, otherwise "false" if disallowed.

You can store additional information about the product using the Extension field and XML data. The extension information
automatically becomes available for query in your business rules.

The Storefront comes with several pre-defined rules that you can simply modify the values without needing to know XSL.
 To learn more about XSL, please see the XSL Transform section.

Custom fields
Custom fields allow you to capture additional information from customers. For example, you may want to require the
customer to enter a date for a room reservation or the names of the attendees. The fields could be in the form of
textboxes, dropdown list, radio buttons, etc. You can define any number of fields, assign a default value to them, marking
them as required and perform simple validations.

You must first enable the Custom fields feature under Configuration > Product. Once enabled, you will see the Custom
field tab appear in your product catalog. Click Add new and select either "Basic" or "Custom code". Basic type allows you
to create fields from predefined input controls easily without any programming knowledge. If you want complete control
over the rendered HTML, you can select the "Custom code" dynamic form type. Under custom code, you can enter HTML,
ASP.NET tags and even Javascript.

When creating a custom field, make sure you enter a valid ID name for your controls. The ID is used to reference the
control by the programming logic. It must be alphanumeric without any spaces and should be unique across all your
custom fields and avoid colliding with any existing ASP.NET controls on the page. A good recommendation is to prefix your
ID with a word. For example, you can prefix with the word "Custom" or "My" so you end up with an ID of
"CustomNameTextBox". The ID name of the field along with its captured value will be printed on the checkout and
confirmation pages. Any underscore character will be replaced with a space and control names like "TextBox",
"DropDownList" will be omitted from the Web print out. For example, if you named your ID "Custom_NameTextBox", it will
print out as "Custom Name" on the Web page.

You'll find many references for the controls on the Web. Here's a good easy to read reference:

ASP.NET Web forms (http://www.w3schools.com/aspnet/aspnet_refwebcontrols.asp)

http://www.w3schools.com/aspnet/aspnet_refwebcontrols.asp

Variant groups
Variant groups is an optional feature that allows you to regroup the different options available for your variants such as by
color and size. See Variants (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/variants/rvdwkpvm/section) for more information. You must first enable the Product variant groups feature
under Configuration > Products.

For example, the current iPad comes in Black or White and 16GB or 32GB. We would then create 2 variant groups name
"Color" and "Storage" to store the relevant attributes. The attributes can be edited under the Option tab of each group.

Then edit their attributes,

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/variants/rvdwkpvm/section

Which will now make the variant groups accessible when creating possible combinations of variants

By selecting the proper variant groups in the dropdown menu.

Once you defined your variant groups, your individual variants can then be assigned to one of the available variant group
combinations (Black 16GB, Black 32GB, White 16GB, White 32GB, etc.). Once all your variants are associated, the
Product Detail module control will allow the customer to pick a variant using the variant groups "Storage" and "Color". If
one variant is not associated to the variant group combination, the Storefront will continue to display the variants in the
default selection mode without the grouping.

If you use the variant groups feature on your variants, you must ensure every variant is associated to a variant
group. If even one variant is not associated, the Storefront will show the default variant dropdown box instead of
showing the variant group control.

Variants
Each product contains one or more variants. Variants are variations of the same product. For example, if you sell shoes,
you may offer your customers different variations of the same shoe by size and color. If you sell movies online, you may
offer in two variants of DVD format and in downloadable version. If there is only one variant entry, then the product is
considered to be without variations. You must always have at least one variant per product, also known as the default
variant.

Any field that is available to be configured in the variant will override the same field that appears at the product level. This
feature allows you to create a product that shares the same information with all the variants underneath it while overriding
some fields for certain variants. For example, the DVD format may have a very different licensing description than the
downloadable version than the general description of the product.

Although not necessary, many retailers will also find it useful to provide a unique SKU number for your variants. This
convention largely depends on your own stock keeping practice.

Inventory
You can track the real-time inventory on hand for your individual variants. When an item is sold, the quantity is
automatically decreased by one. By default, when the inventory is empty, the variant is no longer available for sale unless
you configured the inventory behavior to allow backorder. You can also restrict the minimum and maximum quantities that
can be purchased by your customer per order.

Warehouse
You can associate the product variant to a warehouse if this product is shipped from a different location than your business
address. After checkout, the variant's inventory will automatically be reduced. You must first enable the Warehouse feature
under Configuration > General to use warehouses. Please see Warehouses
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/warehouses/rvdwkpvm/section) for more
information.

If the same product is available from different warehouses, you need to setup one variant for each warehouse so that the
inventory is correctly tracked back to that warehouse. Rather than letting the user decide the variant to buy, you may want
to configure the variant availability rule (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/variant-
availability/rvdwkpvm/section) to show a particular variant from a certain warehouse depending on the user location. For
example, you may want to use the Availability rule to detect if the user is visiting your site from California and present only
the variant that is stored in your West coast warehouse, and do the reverse action for a user located in the East coast.
Depending on the use case, you may need to employ 3rd party detection software like MaxMind GeoIP
(https://www.maxmind.com) lookup to cookify the user visiting your site so that your Availability rule can correctly
determine the precise location of the user.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/warehouses/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/variant-availability/rvdwkpvm/section
https://www.maxmind.com/

Price
The base price can be set for each variant. In addition, an optional product modifier
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-modifier/rvdwkpvm/section) rule can
be applied to change the price based on the quantity selected (tier pricing), values captured from the custom fields (e.g.
size, color, etc).

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-modifier/rvdwkpvm/section

Product Modifier
Modifier rule can be used to modify the selling price dynamically based on quantity, role, etc. For example, you may want
to adjust the price if a customer belongs to a reseller group. You can also apply a sales promotion on top of the modified
price.

You can also use XSL to write your custom price modifier rule. This feature provides incredible flexibility to describe a
highly complex pricing structure should your business require it.

Product Promotion
You can also apply a promotion rule to give a price reduction. For example, you may offer a 20% price discount for
wholesale members or apply a time-limited flat discount.

You can also use XSL to write more complex promotion rule. The expected output should return the calculated promotion
price to charge. Promotion rules are always applied after product modifiers. The Storefront comes with several pre-defined
rules that you can simply modify the values without needing to know XSL. To learn more about XSL, please see the
XSL Transform section.

Subscription Products
If you sell a subscription product, you can configure the Storefront to automatically bill the customer for a recurring order
every fixed interval (e.g. magazine subscription, etc.).

You must first enable the Recurring orders feature under Configuration > General. Once enabled, you can set the
recurring interval for the variant. The Storefront will automatically create a new order for the customer and attempt to
charge the payment when the renewal period has occurred.

If you're running tests on a development/staging machine with production data copied over and you sell recurring
products, make sure to disable any recurring orders or change the payment gateway credentials, otherwise it will
automatically charge your customer's credit card when the order is due for renewal.

Taxable Products
If the product is taxable, you can assign a tax class to this variant. Tax classes are created ahead of time in the
Configuration > Taxes menu. Please see Taxes (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/tax-methods/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/tax-methods/rvdwkpvm/section

Weight & Dimensions
You can also provide the weight and dimensions for your variant to be used to calculate the shipping cost. The values
entered here should be the actual weight and dimensions of your product with its original packaging. It should not include
the weight or dimension of the container or envelope used to hold the product for shipping. Please see Packages
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packages/rvdwkpvm/section) and Packing

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packing-methods/rvdwkpvm/section) for more
information about other weights and dimensions used for actual shipping calculation.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packages/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/packing-methods/rvdwkpvm/section

Variant Availability
The variant availability determines if the variant is available for purchase. You must first enable the Product availability
feature under Configuration > Product. Once enabled, you'll be able to add your own avalability rules. The Storefront
comes with several predefined rules such as allowing a product to be purchased based on user location or security role.

You can also use XSL transform to determine whether this item is available for sale. The expected output should return
"true" to indicate this variant is available for sale under the input conditions, otherwise "false" if disallowed. The Storefront
comes with several pre-defined rules that you can simply modify the values without needing to know XSL. To learn more
about XSL, please see the XSL Transform section.

Attributes
You may override the product attributes set at the product level for the variant. Please see Attributes
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-attributes/rvdwkpvm/section) for more
information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-attributes/rvdwkpvm/section

Gallery Images
You may override the gallery images for this variant. If you do not provide an image for the variant, the image will be taken
from the product level. There is no limit to the number of product images.

Quoted products
A product can require a quote before selling and is usually useful for requesting services or large quantity orders where the
price cannot be automatically determined. For example, if you provide home painting services, you likely want to ask for
the dimension of the house, color choices, etc. to build a price quote. Once you received the request, you may be
contacting your sub-contractors and paint suppliers before finalizing the price. The Storefront can simplify this lengthy
process by capturing the required information from your customers and tracking the request from the start of the quote all
the way to invoicing and completion.

To create a quoted product, simply set your variant Sales type to "Quote". You may also want to disable the Show price
and Show quantity for the product as well as configure any custom fields to capture additional information from the
customer. Please see Custom fields (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-
custom-fields/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-custom-fields/rvdwkpvm/section

A quoted product will not display the price and amount in the shopping cart. If a quoted product is added to the cart along
with other normal selling products, the Storefront will treat the entire order as a quotation and will not request for payment.
As the merchant, you will see the order appear with the status of "Quoted" and it is expected that you will finalize the actual
amount, recalculate the order and mark the status as "Ordered" prior to sending the customer the invoice to pay. The
customer receives the invoice and can resume the payment, completing the normal order cycle. The merchant can
negotiate and adjust the price as many times as needed until the deal is completed or cancelled.

Bundled products
Bundled products are a great way to encourage your customers to shop more. For example, you could sell a computer
tablet and the cover together as a bundle. The customer appreciates it because it saves them time and is usually cheaper
than buying the two products separately. You can create as many configurable or fixed bundles and they can be made up
of as many separate parts you need. The inventory of each part is tracked independently so you know exactly how many
tablets or covers you have left in stock.

You must first enable the Bundled products feature under Configuration > Product settings. Once enabled, you'll be
able to create components and assign parts that make up your bundle.

Component

A component is simply a grouping of your parts to come. You can have different components with different behaviors. For
example, if you're selling a desktop computer, you might create several components (Processor, Memory, Storage, etc.) so
that the customer can select the type of CPU for their processor, the amount of memory and hard drives, etc.

There are several kinds of bundled products. The first is an implicit bundle. An implicit bundle is meant to bundle several
products together without advertising the parts. For example, you could bundle a bicycle and a kickstand but you don't
necessarily want to emphasize the kickstand as a separate part with its own price because the kickstand might be worth
very little compared to the price of the bicycle and would confuse the customer. Yet, it is an essential part of the bicycle and
you still want to bundle them because it helps to sell quicker while allowing you to track the inventories separately. In this
case, the sum of the parts in an implicit bundle appears to be worth more than if advertised out separately.

The second type of bundled product is an explicit bundle. This type of bundle is intended to emphasize the parts that make
up the bundle. The previous example of selling the tablet and its cover is a great way to highlight the parts in an explicit
bundle because the savvy customer is already aware of the prices and savings they would get if buying separately.

The last type is a configurable bundle. This is usually intended for customers to pick and select the parts they want to
make up the bundle. The example of selling a desktop computer and giving the choice for the customer to pick the
processor, amount of storage is a great candidate for configurable bundle if you need to track the inventory of the separate
parts so that you don't run out of hard drives. The Storefront allows you to offer a single (one processor per computer) or
multiple selection (perhaps for multiple hard drives that can go into the computer).

You can mix and match different types of components that make up your bundle. For example, you can offer your
customer the ability to select certain aspects of your bundle while fixing the rest through either implicit or explicit
components.

You must first create the components that make up your bundle. Give it a name and select the desired type and Save.
Then add the product parts that make up this component.

Parts

A product part lists the actual product that you want associated to the component groups that make up your bundled
product. The part can modify the price of the product thereby achieving the bundled savings commonly expected by
customers. You can also set the quantity of products in the bundle or go as far as allowing the customer to modify the
quantity. Currently, only non-recurring and non-booking products that belong to the same seller and warehouse can be
bundled together.

By default, the bundled product will show the combined price from sum of the parts. Suppose the tablet sells for $849.99
and the cover regularly sells for $170, the combined price would be $1019.99. If the cover has a price adjustment of 50%
for being in a bundle, then the cover would be reduced to $85 and the complete bundled product would list the combined
price of $934.99.

The sequence of multiple price adjustments occurs starting from the product variant first and then the product part. For
example, if your variant has a base price of $100 and has a price modifier rule to adjust it to $95. The product part's price
adjustment will occur against the $95, after the variant's own price adjustment. This sequence ensures that your customers
always see the most up-to-date price in your catalog should you decide to sell the product individually or in a bundle.

Sales order detail

It's important to understand that while a bundled product consists of many products in one, it still creates separate order
detail line items internally when added to the shopping cart.

While the customer is mostly unaware of it, this behavior is advantageous to the merchant who works hard to fulfill the
order. The consistency minimizes disruption in your business processes because you can treat the order indifferently
whether the product is bundled or not.

Your business will be able to pack, ship, fulfill, track and refund the individual items very easily. For example, you're not
forced to have all the bundled parts ready for shipping if you're short on inventory for one product. You can ship and track
them separately. The slight indentation in the sales order detail rows indicate a product part belonging to the bundle.

Booking products
Revindex Storefront supports booking products including hotel reservations, short and long term rentals, events and selling
billable hours for services. The booking units can range from hours, days, weeks, months to years allowing you to sell a
wide range of products that are driven by dates.

To configure a booking product, you must first enable Booking products under Configuration > Product settings. Once
enabled, you'll be able to access the Booking tab under the product variant. The Storefront will automatically display a
calendar view that your customers can use to select dates and time for your booking product. You can easily manage all
your booked orders from the Sales > Bookings menu. Please see Bookings
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/bookings/rvdwkpvm/section) for more
information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/bookings/rvdwkpvm/section

Unit Type

The unit type determines how the resources are being sold by hour, day, week, month or year. For example, if you offer
legal consultation, you might select "hours" for billable work. For hotels, you're likely allowing booking by days. For
apartments, you might want to allow bookings by the week, month or even yearly.

It's important that you don't change the unit type once the product has been published and have started selling as it will
impact the behavior of historical orders.

You can set the minimal and maximum order units if you need to enforce a range of units to be reserved at a time. For
example, you want to ensure the customer reserves 3 hours block at a time.

You can also block out dates for holidays and special days when your resources are not available for booking.

Inventory

If your variant has an inventory value set, the Storefront will automatically track and enforce inventory by dates so your
customers can only reserve dates when it's actually available. For example, if you operate a hotel and you have an
inventory of 50 standard rooms available, the Storefront will allow only 50 rooms to be reserved in total for any given date.

Time zone

If you sell locally or your products are not time sensitive (you only deal with rough dates), you might not need to be
concerned about time zone. For all other cases, it's important to understand that the Storefront treats the selected booking
dates according to your portal's time zone consistent with the expected behavior of other major booking and travel sites. It
is therefore crucial to correctly configure your portal's time zone before you start selling booking products.

For example, suppose you operate a hotel that is situated in New York and your portal's time zone is therefore set to
Eastern Standard Time (EST). A customer in Australia (whose time zone is almost one day ahead), reserves the hotel
room for April 15. The Storefront will register it as April 15 00:00:00 EST in New York time. In other words, you're always
selling resources according to your time zone. For the customers around the world, it makes perfect sense because they
are expected to arrive at your hotel at those dates under your time zone consistent with other travel sites and makes the
buying experience easier. Internally, the Storefront converts and stores all captured dates as Universal Time Coordinate
(UTC) time zone to avoid any data ambiguity.

Required Products
Variants can also have required products (e.g. a notebook product requires a battery and power adapter). Required
products are automatically added to the customer’s shopping cart when this variant is chosen. For example, you sell
magazine subscriptions that has a one-time setup fee. Create your subscription product and your setup product as two
separate products like you normally would. Then use the required products feature to associate both products. When the
customer adds the magazine subscription, the Storefront will automatically attach the setup fee.

You must first enable the Required products feature under Configuration > Product. Once enabled, you'll be able to
associated the products under the Required tab.

Unlike bundled products, the use of required products is more suitable for ensuring certain products that require each other
are present both in the shopping cart as opposed to products that merely complement each other for a better price deal.
From the customer point of view, a required product appears as a separate high-level order detail line item when added to
the cart whereas parts from a bundled product are subdued and do not appear.

Therefore, conditions configured for a required product is validated against all the products currently present in the cart. As
such, if the required product has a precise required quantity, it will validate against all the products currently in the cart. For
example, you can use a required product to charge a one-time setup fee regardless of the number of products A or B
added to the cart. Please see Bundled products (http://www.revindex.com/Resources/Knowledge-Base/Revindex-

Storefront/bundled-products/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/bundled-products/rvdwkpvm/section

Downloadable Products
If you are selling a virtual product (e.g. software or e-book), you can provide a download file location that will be made
available to your customers after purchase. The file location can be any downloadable file, a DNN page or any random
URL. File protection is handled by native DNN security. Please see How to create downloadable products
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-downloadable-
products/rvdwkpvm/section) for more information

If you need to automatically issue a license key, serial number, password or any code to unlock your virtual product, you
can make use of the Storefront's built-in access rights system. Please see Rights
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-rights/rvdwkpvm/section) for more
information.

You can have multiple downloadable items per product simply by compressing your files into a single zip file or by creating
implicit bundles. Please see Bundled products (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/bundled-products/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-downloadable-products/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-rights/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/bundled-products/rvdwkpvm/section

Custom fields
You can capture additional values from your customer using custom fields. Any custom fields defined under the product
variant will override the custom fields defined at the product level. Please see Custom fields
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-custom-fields/rvdwkpvm/section) for
more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-custom-fields/rvdwkpvm/section

Actions
You can automatically grant or revoke security roles to customer after purchasing a variant or make a Web request (GET
or POST) to an external service. This feature is useful if you need to allow access to certain pages on your Web site after
the customer purchases the product or you have custom logic that needs to run.

You must first enable the Product actions feature under Configuration > Product. Once enabled, you can add your own
action rules from the Action tab.

Please note you can only grant security roles that are allowed under the Configuration > Security menu. This security
feature prevents staff operators from creating product action rules to grant themselves higher level roles (e.g.
“Administrators” role).

For security reasons, to execute SQL statements in your action rules, you must first login as Host user and enable the
Allow SQL in action rules option under the Configuration > Security settings.

The Place order action rule can also use XSL transform to determine what action rules to run. The Storefront comes with
several pre-defined rules that you can simply modify the values without needing to know XSL. To learn more about
XSL, please see the XSL Transform section.

Extensions
Your products may have additional information that is not covered by the standard fields in the product catalog. In fact, you
can store any arbitrary information in the Extension field hidden from customer view. This extended information is useful for
record keeping and it becomes available in your business rules to change the behavior of the product.

Some example uses of the Extension field include:

Record the type of material that you don't necessarily want the customers to see. The type of material (e.g. percentage of

gold) is calculated by your price modifier rule to adjust the price.

Use the Extension field to record the email address for each different product that you drop ship. The Place order
action rule can be written to read the extension field and automatically send out the email to the manufacturer to fulfill.

You must first enable the Extensions feature under Configuration > Product. Once enabled, you'll be able to enter your own

extension data. The Extension field can hold data in any XML format. We recommend keeping the format simple, for example:

<data>
 <material>gold</material>
 <composition>0.5</composition>
</data>

In your other business rules (e.g. place order action rule, price modifier rule, availability rule, email templates, etc.) you can
query the data stored in the Extension field to make determinations that affect the behavior of the product.

Cross-sell products
Cross-sell products are a great way to increase sales. For example, if you sell electronic toys, a quick easy way to
increase your revenue per order is to remind the customer to buy batteries right before checkout. There are many cross-sell

opportunities for almost every type of business. Many times, these are high margin products or services being sold to impulse

buyers right at the last minute (e.g. insurance, gift wrap, etc.).

The cross-sell products are offered to the customer on the cart page right before they proceed to checkout. Therefore,
when putting together your cross-sell products, think about what your customer will perceive at the moment before
checkout. You want to offer one or two interesting products that are relevant to items in his cart at a small price tag relative
to his total purchase. You definitely want to show a catchy title like "Don't forget your batteries!!!"

You must first enable the Cross-sell products feature under Configuration > General. Once enabled, you can offer
cross-sell products such as batteries that are targeted to a few specific products you sell under Catalog > Products menu
or you can offer products that are generally available to every product such as gift wrap under Configuration > Cross-sell
product settings.

Revindex Storefront has a powerful rules engine that allows you to optimize your cross-selling effort by showing only qualified

products that are relevant at the point of checkout. For example, you can offer $5 batteries when you detect electronic goods are

purchased in the cart with missing batteries and his total purchase reached at least $40. You can even pair it with a promotion to

entice your customers with a discount like "This product is offered only to you at 50% off because you spent over $100".

Whatever the products you decide to offer, it should always make sense and add value for the customer.

How to create a simple product
Creating a simple product for sale is easy and takes a few minutes. Below are the typical steps to create a basic product:

1. From the Catalog > Products menu, click on Add new

2. On the General tab, give your product a meaningful name.

3. On the Description tab, enter the description for your product.

4. On the Display tab, select the categories this product should be associated with.

5. Click on Save. Your initial product is now created with a default variant.

6. On the Gallery tab, add some images to depict your product.

7. On the Variant tab, select the default variant:

i. On the General tab, give it a name or leave blank. Enter the SKU for this product if you have one. You may
fill up the other information about this variant such as manufacturer, inventory, etc.

ii. On the Price tab, enter the base price for this product. If this is a recurring product (subscription), set a
non-zero number for the Recurring value. Assign the variant to a Tax class if it is taxable.

iii. On the Shipping tab, check the Require shipping checkbox if this product needs shipping.

iv. On the Dimension tab, enter the weight and dimension of your variant to be used for shipping calculation.
The values should include any packaging.

That's it. You have now created a new product ready to sell. You can always go back to edit your product and make
changes.

How to create a recurring product
Revindex Storefront supports recurring products, also known as a subscription. The system will automatically create a new
order for the customer when the recurring period has elapsed. You must first enable the Recurring orders feature under
Configuration > General. Creating a recurring product for sale is easy and takes a few minutes. Below are the typical
steps:

1. From the Catalog > Products menu, click on Add new

2. On the General tab, give your product a meaningful name.

3. On the Description tab, enter the description for your product.

4. On the Display tab, select the categories this product should be associated with.

5. Click on Save. Your initial product is now created with a default variant.

6. On the Gallery tab, add some images to depict your product.

7. On the Variant tab, select the default variant:

i. On the General tab, give it a name or leave blank. Enter the SKU for this product if you have one. You may
fill up the other information about this variant such as manufacturer, inventory, etc.

ii. On the Price tab, enter the base price for this product. Assign the variant to a Tax class if it is taxable.

iii. Set a non-zero number for the Recurring value and the desired recurring interval.

iv. On the Shipping tab, check the Require shipping checkbox if this product needs shipping.

v. On the Dimension tab, enter the weight and dimension of your variant to be used for shipping calculation.
The values should include any packaging.

That's it. You have now created a new recurring product ready to sell. You can always go back to edit your product and
make changes.

How to create a setup fee
In many businesses, especially for recurring products, you may want to charge a one-time setup fee. Please note you must
first enable the Required products feature under Configuration > Product to use this functionality.

1. You can do so by first creating your usual product for sale (See "How to create a simple product
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-simple-
product/rvdwkpvm/section)" and "How to create a recurring product
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-recurring-
product/rvdwkpvm/section)").

2. Then create your setup fee as another new product following the same steps as your previous product. Under the
Display tab, uncheck the Published checkbox to hide this product from public view. Configure the price for the
default variant and any other settings you need. Make sure the variant's recurring interval is zero since this is a one-
time setup fee. Save your product.

3. Go back to your previous product and associate the setup product as a requirement under the Required tab.

Now when the customer purchases the first product, it will automatically add the required setup fee.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-simple-product/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-recurring-product/rvdwkpvm/section

How to create overridable price product
An overridable price product is a product that the customer can decide on the price to pay. A good example is a donation or
gift certificate product. The customer can decide on how much to donate or how much money to put into the gift certificate.
Please note you must first enable the Custom fields feature under Configuration > Product to use this functionality.
Follow the steps below to create an overridable price product:

1. Create a regular product like you normally would do.

2. Select your product variant

3. Under custom field tab, select "Basic" for the dynamic form dropdown.

4. Click Add new

5. Select Field type to "TextBox".

6. Give the ID a name like "CustomPrice_TextBox"

7. Give the Label a name like "Custom price:"

8. Tick the Required checkbox.

9. Choose "Decimal" for the Data type.

10. Click OK.

11. Under Price tab, set the Modifier rule to "Override price"

12. Set the Field ID to the exact ID you named above ("CustomPrice_TextBox").

13. Save the variant.

How to create a configurable price product
A configurable price product is a product where the price varies depending on the features chosen by the customer. There
are several ways to create configurable products using bundled products or custom fields with price modifier. Bundled
products are more powerful and allows you to track inventory for each part included in the configurable product. Custom
fields are simpler but does not track inventory for the individual parts. Please see Bundled products
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/bundled-products/rvdwkpvm/section) and
Custom fields (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-custom-
fields/rvdwkpvm/section) for more information.

Using bundled product

You must first enable the Bundled product feature under Configuration > Product to use this functionality.

1. Start by creating all your available parts as regular products like you normally would do (e.g create a Hard Drive
storage product with several variants for 100GB, 200GB, 300GB). Make sure to assign a base price for each variant
(e.g. $10 for 100GB, $20 for 200GB hard drive).

2. Now create a regular product like you normally would do for your main product.

3. Under the Variant tab, click on Edit details.

4. Under the Component tab, click Add new to create a new component.

5. Give your component a name (e.g. Storage) and select the Type to "Multiple selection". Click Save.

6. Click Add New to add a new part for the newly created component.

7. Select the product you created earlier to associate to this part (e.g. 100GB hard drive). Click Save & Return.

8. Repeat step 6 for as many parts you need (e.g. 200GB, 300GB hard drives).

9. Repeat the steps above if you have more than one type of component in your configurable product (e.g. Memory,
Software, etc.)

Using custom fields and price modifier

You must first enable the Custom fields feature under Configuration > Product to use this functionality. Follow the steps
below to create a configurable price product:

1. Create a regular product like you normally would do.

2. Under the custom field tab, select "Basic" for the dynamic form dropdown.

3. Click Add new

4. Select Field type such as "DropDownList".

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/bundled-products/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/product-custom-fields/rvdwkpvm/section

5. Give the ID a name like "Custom_Storage_DropDownList"

6. Give the Label a name like "Storage:"

7. Add the available choices to the List items selection (e.g. 100GB, 200GB, 300GB). You must enter both the name
and value (e.g. Name = 100GB, Value = 100). The value is the actual text that will be matched to adjust the price.

8. Click OK.

9. Repeat the steps above if you have more than one custom field.

10. Click Save.

11. In your variant, under Price tab, set the Modifier rule to "Configurable price".

12. Click Add new.

13. Set the Field ID to the exact ID you named above ("Custom_Storage_DropDownList").

14. Set the Operator to "Equal" and the Operand to one of the values (e.g. "100"). If your custom field is a CheckBox
type without value, set the Operand to "true".

15. Set the price adjustment for that selected value.

16. Repeat the steps above for each available selection that you want to adjust the price.

17. Save the variant.

How to create downloadable products
A downloadable product is used to grant access to a file or page on your site. For example, a site that sells e-books will
need to grant access to PDFs for customers who purchased the product. There are two ways to accomplish this.

Using Link Obscurity

The easiest way is to attach a file on your site to the variant. This is a quick and easy way to provide downloadable file.
However, anyone who gets hold of the URL, will be able to download your file.

1. From the Storefront administration Catalog > Products, create your new product as usual. See How to create a
simple product (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-simple-
product/rvdwkpvm/section) for more information.

2. Edit the variant details. Assign the Download file to an existing file on your site or upload a new file. Click Save.

Using Secure Folder

Your site is capable of securing file access by folder. This means you can upload your file to special secure folders and
only grant the user access by a special role. Even if the URL is discovered, the user cannot download the file without
permission.

1. Under Admin > Security Roles page, click Add New Role. Give it a name (e.g. "War and Peace") and
click Update.

2. From the site Admin > File Management page, start by creating a new folder to place your files. Give it a name
(e.g. "War and Peace") and choose Folder Type = "Secure" and click Save. See this video
(http://www.dnnsoftware.com/community/learn/video-library/view-video/video/247/view/details/using-secure-folders-
in-dotnetnuke) for more information.

3. Right mouse click the View Properties on the newly created folder.

4. Under the Permissions tab, allow access to your newly created role (e.g. "War and Peace") and remove access for
other non-administrative roles. Click Save.

5. Upload your desired file(s) to this newly created folder.

6. From the Storefront administration Configuration > Security settings, set the Allowed roles to include your newly
created role. Click Save.

7. From the Storefront administration Catalog > Products, create your new product as usual. See How to create a
simple product (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-simple-
product/rvdwkpvm/section) for more information.

8. Edit the variant details. Assign the Download file to your newly uploaded file. Under the Action tab, set the Place
order action rule to "Basic" and click Add new. Select "Grant role" and choose the newly created role. Click Save.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-simple-product/rvdwkpvm/section
http://www.dnnsoftware.com/community/learn/video-library/view-video/video/247/view/details/using-secure-folders-in-dotnetnuke
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-simple-product/rvdwkpvm/section

Please note in both cases, after the customer has placed the order and the merchant has marked the order as
"Completed" or "Paid", the customer will be able to view their downloads from the Manage Product Download
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/manage-product-download/rvdwkpvm/section)
module.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/manage-product-download/rvdwkpvm/section

How to create a catalog product
A catalog product is a browse-only product. Customers can only view, but cannot buy over the Internet or must buy through
the phone.

If all your products are browse-only, you can disable the buy options site wide by following the steps below:

1. Under Configuration > General, first enable the Product detail, Product list and Product showcase features.

2. Once the features are enabled, you can access the Configuration > Product detail, Configuration > Product
list and Configuration > Product showcase to disable the Show Add to Cart button, Show Buy Now button
and Show quantity checkboxes. If needed, you can also disable the Show price to hide the prices.

If only certain products are browse-only, you can disable the buy options for selected products by following the steps
below:

1. Under Catalog > Products, select the desired product to edit.

2. In the General tab, unselect the Internet option in the Buy method field and Save. If needed, you can also disable
the Show price to hide the prices under the Display tab.

3. Repeat the steps for each of your other products.

How to create a voucher product
A voucher, also known as a gift card or gift certificate, can be sold and automatically generated and emailed to your
customer. You can sell an unlimited number of vouchers and for different amounts. Please see Vouchers
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-vouchers/rvdwkpvm/section) for more
information.

1. You must first enable the Voucher feature under Configuration > General.

2. Once enabled, create a new voucher definition from the Catalog > Vouchers menu to define properties of a
voucher such as start, end dates, initial amounts, whether it is transferable to another user, etc. This definition acts
as a template for actual vouchers that will be issued later on in bulk or singularly.

3. Create a new product under Catalog > Products. Under the Variant tab, set your selling price and optionally set a
limited inventory if needed. The selling price does not need to match the actual cost of the voucher. For example,
you can sell the product at $25 but give a larger $30 voucher as a promotion.

4. Edit the details of your variant. Under the variant's Resource tab, select the desired voucher definition to
automatically assign when that product is purchased.

5. You can repeat the steps above and create different voucher amounts to sell (e.g. $25, $50, $100 vouchers) by
assigning different variants to different voucher definitions.

Vouchers are like money and need to be treated with extra precaution. You should verify each order for fraud. Once you're
satisfied, you can edit the order detail and click the Issue voucher button to generate the voucher for the customer and
click the Email voucher receipt button to send an email to the customer with the voucher code attached.

If fraud is not an issue with your type of business, you can configure the Storefront to immediately mark all new incoming
orders as "Completed" or either payment status as "Paid" to trigger the automatic voucher generation. Once configured,
the customer will automatically receive an email with the generated voucher code after a successful checkout. Please see
How to force order and payment status (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-
to-force-order-and-payment-status/rvdwkpvm/section) for more information.

You can customize the email template from the Configuration > Communication settings. The customer can also retrieve
and lookup their voucher balance from the Manage Voucher module. Please see Manage Vouchers
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/manage-vouchers/rvdwkpvm/section) for more
information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-vouchers/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/manage-vouchers/rvdwkpvm/section

How to email external license key
If you sell software or any product that needs to generate a license key or serial number from an external system, you can
use the Place order action rule to retrieve external resources. Please see Actions
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/variant-actions/rvdwkpvm/section) for more
information.

The following example shows how to create a Place order action rule that calls an external URL to retrieve the generated
license key and send it to the customer by email.

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">
 <xsl:template match="/">
 <!-- Craft our URL to retrieve the license key passing any query parameter -->
 <xsl:variable name="url" select="concat('http://a.com/gen.asp?o=', /in/salesOrder/salesOrderNumber)"/>
 <!-- Expect license key in plain text. Use document() function to return complex XML instead. -->
 <xsl:variable name="key" select="unparsed-text($url)"/>
 <out>
 <!-- Send email to customer with their license key -->
 <sendMail>
 <mailFrom>support@company.com</mailFrom>
 <mailTo>
 <xsl:value-of select="/in/user/email"/>
 </mailTo>
 <subject>Your license key</subject>
 <htmlBody>
 <h1>
 <xsl:value-of select="$key"/>
 </h1>
 </htmlBody>
 </sendMail>
 </out>
 </xsl:template>
</xsl:transform>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/variant-actions/rvdwkpvm/section

How to show product without category
If you want your product to show up when no category is selected by the customer, you need to tick the Featured checkbox
under the product's Display tab. Products that are marked as featured will appear on the product list page even if no
category is selected.

How to give first month recurring free
If you sell monthly subscriptions, a good marketing idea is to give the first month free to encourage users to sign up. The
customer must always make a first purchase going through the Web checkout process in order for the Storefront to
capture any billing and payment information necessary to charge the customer for future occurrences. There are two
options to configure your first free product on checkout.

Using promotion to give first month free

One easy way is to create a promotion rule that gives the discount based on the origin.

1. Under Marketing > Promotions menu, click Add new.

2. Give your promotion a name (e.g. "Free first month")

3. Under the Promotion tab, select "Sales order detail" as your promotion type.

4. Choose "Custom rule" for your promotion rule.

5. Enter the following rule to check the order is originating from a Web checkout (origin = 1) and not system recurring. You

may need to adjust the rule if you want to put more conditions such as limiting the discount to only a specific variant, etc.

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">

 <xsl:template match="/">

 <out>

 <discountAmount>

 <xsl:if test="/in/salesOrder/origin = 1">

 <xsl:value-of select="-1 * /in/this/salesOrderDetail/price * /in/this/salesOrderDetail/quantity"/>

 </xsl:if>

 </discountAmount>

 </out>

 </xsl:template>

</xsl:transform>

Using required product to give first month free

An alternative approach is to create a different secondary product (you can call it "First Trial" or give it any creative name
you like). This simple product has a variant (non-recurring) that requires your actual subscription product. The customer
will actually buy your "First Trial" product and the Storefront will automatically set up the future recurring product. You can
hide the subscription product since the customer won't be interacting with it.

1. Under Catalog > Products, add a new product.

2. Give it a name like "Free Trial" and Save.

3. Edit the variant of this product. Notice this variant has a zero dollar price.

4. Under the Required tab, add your actual subscription product to it.

5. Uncheck the Published and set the Defer date to the first occurrence to happen (e.g. 1 month).

6. Save.

In both cases, you can choose to collect their credit card information during checkout, but the customer won't get charged
since the amount is zero. Of course, if they don't cancel by the end of the month, their credit card will be charged for the
renewal going forward. If you don't want to take their credit card information, you can adjust the Availability rule for your
payment methods to allow the special "None" payment method when the total amount is zero, and likewise enable the
"Credit Card" payment method if the reverse condition is true.

How to create a deferred product
A deferred product is a good way to accept early commitment for a product but only collect payment later when it begins
(e.g. your business is not allowed by law to collect payment before it starts). For example, if you sell courses that begin in
September, but you accept early registration from July. You can create a deferred product by following the steps below.

1. Under Catalog > Products, create your actual product with the desired name and price as usual. Uncheck the
Published checkbox so it's hidden from the public catalog. Please see How to create a simple product
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-simple-
product/rvdwkpvm/section) for more information.

2. Create another new product. This will be your dummy product that you will sell right away on the first checkout. Give
it a price of $0.00. Make sure it's marked as published so it's visible in the public catalog. Although, it's a dummy
product, it should have a recognizable name so that the customer thinks they're buying the actual product. You can
set the inventory for this product if you have limited quantities available.

3. Set your dummy product to require the actual product you created earlier under the Required tab.

4. Uncheck the Published if you don't want the required product to be visible. Set the Defer date to a future date.

The customer browsing your site will see the dummy product for sale and adds it to cart. During checkout, they will be
prompted to enter their credit card details. Since the amount is $0.00, they will not be charged, but their payment
information will be kept in the system. When the actual product is due following the configured deferred date, the Storefront
will automatically generate a new order and attempt to charge the customer's payment for the amount due.

Alternatively, if you're simply accepting new orders over the phone, you can also create a deferred order by marking the
order as "Preordered" with a future Order date. Please see Preorders (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/preorders/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-simple-product/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/preorders/rvdwkpvm/section

How to sell on eBay
You can increase your sales by selling on 3rd party channels like eBay. The Storefront makes it easy to publish and
manage your products from a central location.

You must first enable the Channel feature under Configuration > General. Please read Channels
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/channels/rvdwkpvm/section) for more
information.

The following example shows how to list a product on eBay.com:

1. From the usual Catalog > Products page, select your desired product that you like to list on 3rd party channels.

If you intend to use real-time shipping providers, make sure your product variant has the proper physical dimensions
configured (width, height, depth, weight) as it may be used by eBay to calculate shipping cost.

By default, the Storefront will use your detailed gallery images (largest images) to publish to eBay. Please note eBay
has its own picture requirements (http://developer.ebay.com/DevZone/guides/ebayfeatures/Development/Pictures-
Intro.html) so you may need to configure your Storefront products to adhere to these requirements first before
publishing.

2. Under the Channels tab, click on Add new.

3. Select the desired provider (e.g. eBay U.S) and fill all the required information. Make sure to read the tooltip next to
each field for more information on the different requirements subjected by the provider.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/channels/rvdwkpvm/section
http://developer.ebay.com/DevZone/guides/ebayfeatures/Development/Pictures-Intro.html

4. Make sure to select at least one category and no more than two categories. You must also specify a variant. If you
have multiple variants, you must list them separately by repeating the steps above for each variant. Enter the
quantity you have for sale. Please note inventory information is currently not synced back between the Storefront
and eBay.

5. You must have at least one domestic shipping. Click on Add new to add a shipping method. Select the desired
shipping service and click OK. All your shipping services must be using the same rate type (calculated or flat rate,
but not mixed). eBay allows up to 3 shipping services per rate type.

6. Select the payment methods you will accept for this product listing.

If you intend to offer PayPal, please ensure you have configured your PayPal email address under Configuration >
Payment for PayPal Website Payments Standard.

Click on the edit icon to enter your PayPal email address. Please note you can ignore the other fields and leave
blank if your own site doesn't offer PayPal, but you only offer it for eBay customers. For eBay purposes, only your
email address is required.

7. Click Save. Congratulations! Your listing is now published on eBay.

You can always update your listing as long as it's active on eBay. Once a product has sold or a bid has been placed for an
auction, or the Start Date has passed, eBay normally does not allow updating the listing. Please verify your Event Viewer
if you have any errors saving your channel products.

How advanced URL provider works
How you present your catalog URL is important for SEO and can help increase sales by making your products more easily
discover-able by humans.

Consider a typical product URL contains some query string parameters to allow the computer to return the requested
product. Traditionally, the format shown below with the query string parameter appearing after the question mark is the
normal URL form and is the form that most underlying Web applications can consume and understand.

http://site.com/product?rvdsfpid=shoe-3

When you enable friendly URL rewriting (http://www.dnnsoftware.com/wiki/url-rewriting), the query string parameter may
be rewritten as segments in the URL path to provide for a more friendly format. The challenge of rewriting a URL is to not
lose any information and allow the friendly form to be converted back to its normal URL form, since that is the form
expected by the Web server.

http://site.com/product/rvdsfpid/shoe-3

While the friendly URL is already a respectable form optimized for search engines and computers, it still contains gibberish
data that are undesirable to human. Revindex Storefront 7.3 now includes an advanced URL provider that automatically

rewrites your catalog URLs into even shorter and human friendlier form:

http://site.com/product/shoe

Clearly, the new form is a more human friendly representation of the product over the previous URLs. For the user on the
Web browser, it's short to type, easy enough to remember and one can easily swap the keyword "shoe" for another
product like "shirt" to locate the next product.

Once again, the challenge of rewriting the URL requires that all of the information can somehow be reversed back to its original

normal URL form. We must, therefore, rely on certain strict rules to provide the mechanics to unwind the information. Such rules

include the placement of the keyword in the URL path segments, the uniqueness of the "shoe" keyword and among other rules.

From a merchant perspective, you only need to ensure your product keywords are unique. By default, the keyword is chosen

from your product name. If, however, a SEO URL name is provided, it will be used in place of the product name. If you have a

collision in your product name or SEO URL name, the rewriter will reverse the friendly URL to the first product it found. It is,

therefore, extremely important that you give unique product names or unique SEO URL names to your products when using the

advanced URL provider. A good name should include just the right amount of keywords to allow for optimal search engine

indexing while keeping it short and meangingful for humans. For example, the keywords "genuine leather shoe" provides a richer

indexing information while keeping your product URL names sufficiently unique and short. Please see SEO

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/products-seo/rvdwkpvm/section) for more

information.

The advanced URL provider is not limited to products only. It also optimizes for categories, manufacturers, distributors and

variants. Similarly, you want to make sure these catalog structures have unique names throughout your system.

http://site.com/products/apparels

http://site.com/product/apparels/shoe

http://site.com/product/apparels/shoe/brown

http://www.dnnsoftware.com/wiki/url-rewriting
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/products-seo/rvdwkpvm/section

What happens to my old URL?

Your old URLs whether they are bookmarked or indexed by search engines will continue to function because the advanced
URL provider is meant to be convertible between the two forms.

Do I need to notify search engines?

It is not necessary since the Storefront will automatically generate canonical hints and sitemap to search engines such that
over time, when the crawler bots revisit, they will start indexing and replacing your old URLs with the new ones.

What happens if I disable advanced URL provider?

Any short friendly URL generated by the advanced URL provider will not be recognized once disabled since there is no
engine to rewrite back to the normal URL form. Fortunately, the Storefront automatically publishes sitemap of your
products and search engines are usually quite fast to pick up URL changes after a few visits.

How do I verify for unique keywords?

Firstly, you should have a business procedure for naming your products so that you and your staff is aware of the naming
convention that minimizes conflicts to begin with. Once the procedure is in place, you only need to occasionally verify for
correctness. The easiest way to visually inspect them is to export out the catalog data and glance through the keywords
using Excel.

How to enable the advanced URL provider

By default, the advanced URL provider is enabled on new installations. If not, you can follow the steps below to enable it:

1. Change the urlFormat attribute to "advanced" in your Web.config

<add name="DNNFriendlyUrl" type="DotNetNuke.Services.Url.FriendlyUrl.DNNFriendlyUrlProvider,
DotNetNuke.HttpModules" includePageName="true" regexMatch="a-zA-Z0-9 _-" urlFormat="advanced"/>

2. Under Admin > Site Settings page, make sure the Revindex Storefront URL Extension Provider is enabled
under the Advanced URL Settings tab.

Are there other settings that I can tweak?

No additional settings are required. There is an unsupported 3rd party DNN URL Management module
(http://dnnurlmanagement.codeplex.com/) that provides a user interface for managing general settings for the DNN advanced

URL rewriter that you may want to investigate.

http://dnnurlmanagement.codeplex.com/

How to delete all products
For your security, we currently do not support deleting products permanently. Products are simply marked as deleted
internally and that is the suggested mode.

If you have only been testing and need to permanently delete all products before starting production, you can try to
execute these SQL queries. Please make sure to take a full backup, run the queries and test your system afterwards.

We don't support nor encourage deleting products permanently. Use at your own risk.

DELETE FROM Revindex_Storefront_RecurringSalesOrder
DELETE FROM Revindex_Storefront_VoucherHistory
DELETE FROM Revindex_Storefront_SalesPayment
DELETE FROM Revindex_Storefront_SalesOrderDetail
DELETE FROM Revindex_Storefront_SalesOrder
DELETE FROM Revindex_Storefront_Gallery WHERE ProductID IS NOT NULL OR ProductVariantID IS NOT NULL
DELETE FROM Revindex_Storefront_ProductAttribute
DELETE FROM Revindex_Storefront_ProductCategory
DELETE FROM Revindex_Storefront_ProductReview
DELETE FROM Revindex_Storefront_ProductVariantOption
DELETE FROM Revindex_Storefront_WishListDetail
DELETE FROM Revindex_Storefront_RequiredProduct
DELETE FROM Revindex_Storefront_ProductVariant
DELETE FROM Revindex_Storefront_ProductVariantGroupOption
DELETE FROM Revindex_Storefront_ProductVariantGroup
DELETE FROM Revindex_Storefront_CrosssellProduct
DELETE FROM Revindex_Storefront_RelatedProduct
DELETE FROM Revindex_Storefront_Product

Vouchers
A voucher is a special form of payment method carrying a predefined monetary value that you can issue from your
Storefront. It can only be used to redeem for purchases made on your site using a special code that the customer is
required to enter. Common examples include gift cards, gift certificates, store credits, etc.

You must first enable the Voucher feature under Configuration > General. Once enabled, you can create a voucher
definition from the Catalog > Vouchers menu to define properties of a voucher such as start, end dates, initial amounts,
whether it is transferable to another user, etc. This definition acts as a template for actual vouchers that will be issued later
on in bulk or singularly.

A transferable voucher will allow it to be used by anyone who has knowledge of the code and not just by the owner of the
voucher.

Only voucher definitions with an Active status can be used for checkout. Since vouchers are usually printed to a physical
medium and given away (e.g. gift card), it is recommended that you do not delete a voucher definition as it will also delete
all issued vouchers belonging to this voucher definition. Instead, mark the voucher defintion as inactive to prevent being
used.

Once you have defined your voucher. You can associate your product variant to automatically generate a new voucher of
this type when a customer purchases the product. Issues vouchers appear under the Sales > Vouchers menu. Please see
Vouchers (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/sales-orders-
vouchers/rvdwkpvm/section) for more information on issued vouchers.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/sales-orders-vouchers/rvdwkpvm/section

Rights
The Storefront supports the distribution of access rights such as license keys, serial numbers, password or any code from
the purchase of a product on your site. If your site sells virtual goods (software, ebook, etc.) that needs to grant user
access rights to unlock the purchased item. Please see Downloadable Products
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/downloadable-products/rvdwkpvm/section) for
more information.

In the example of software license keys, you first pre-generate a list of codes and save into the Storefront. When the
customer buys the software, the Storefront will automatically issue one of your unassigned license keys to the customer.
The customer receives an email with the codes issued and is able to view them from the Manage Rights page.

You must first enable the Rights feature under Configuration > General settings. Once enabled, you must first define the
type of access right under the Catalog > Rights menu. Click on Add new to create a new right definition. Give your type
of right a name and description and Save.

You can then assign the right definition to your product variant under Catalog > Products menu. Choose your desired product

and edit the details of your variant. Under the Resource tab, select the type of Rights to associate this product with your newly

defined right.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/downloadable-products/rvdwkpvm/section

You are now ready to import your list of codes into the Storefront. This last step is to seed the system with some actual
codes that you want to be issued to customer when they purchase this product. Please see Rights
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/sales-rights/rvdwkpvm/section) for more
information on uploading your new codes.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/sales-rights/rvdwkpvm/section

Sales

Orders
You can search and fulfill customer orders from the Sales > Orders menu. Customer orders contain all the information
collected during checkout and payment processing including billing, shipping, order detail and payment information. It is
important that you verify every order and payment received are valid.

Order, Payment & Shipping Status
The order, payment and shipping status drive the Storefront operations workflow and reports. For example, downloadable
product is only made available to customers for download when the order is marked as “Paid”. Sales reporting numbers in
the Dashboard are determined based on the status of the orders. In practice, individual businesses may interpret the
status differently within the context of their operation. See Shopping Cart Flow
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/shopping-cart-flow/rvdwkpvm/section) for more
information on how the different statuses work in different order-to-cash scenarios. Also read How to force order and
payment status (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-force-order-and-
payment-status/rvdwkpvm/section) to tell the system how you want it to automatically handle your order statuses after
each checkout.

Order
Status

Description

Incomplete An open order that has not yet completed checkout.

Pending
Order is created but is awaiting for a resource or action from merchant or customer. E.g. The merchant
suspects the order is missing information and is awaiting confirmation from the customer.

Preordered
Order is created earlier before its actual required date. This status is useful for pre-ordering products or
generating invoices ahead of time to bill the customer.

Ordered Order received but not yet verified. Order still needs to be processed.

Processing Order is currently being processed.

Completed Order is paid and shipped.

Cancelled Order has been cancelled.

Declined Payment was declined. Merchant declines to process the order.

Payment Status Description

Pending Payment has not been received or verified.

Paid Payment is settled and verified.

Cancelled Payment has been cancelled.

Refunded Payment has been refunded.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/shopping-cart-flow/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section

Declined Payment is declined by the payment processor.

Shipping Status Description

Not Required No shipping is required.

Not Shipped Shipping is required but has not yet been shipped.

Packing Products are being packed.

Packed Products have been packed but not yet shipped.

Dispatching Packages are sent off for shipping.

Shipped Products shipped.

Undeliverable Products failed to ship.

Payments
It is possible for an order to have more than one payment. For example, a customer may pay a partial amount in credit
card and the remaining amount in check. The Payments tab keeps track of all payment transactions types including
purchases and refunds. Credit card payments are always processed through your configured payment gateway. You can
create a new payment transaction by clicking on Add new.

You can bypass the payment gateway by issuing manual transaction using any of the buttons marked as “Manual”. For
example, you may use your virtual terminal to charge or refund amount to the customer’s credit card instead of the
payment gateway and yet keep track of all the payment information in your store.

Transaction Type Description

Invoice Request for payment. Usually for invoices and
PayPal payment requests.

Authorize Payment is reserved but has not yet settled or
withdrawn. Most credit card gateways will
automatically cancel authorization if a capture is
not performed within 24 to 48 hours.

You must perform a Capture transaction to
actually withdraw the money that you reserved.

To cancel an authorization, you must perform a
Void transaction.

Capture Previously authorized payment has settled. To
cancel a Capture transaction, you must perform
a Refund transaction.

Purchase Payment is settled and withdrawn. To cancel a
purchase, you must perform a Refund
transaction.

Void Payment is cancelled for an authorization
transaction.

Refund Previously settled payment has been refunded.

How to refund payment
Occasionally, you may need to refund the full or partial amount to your customer from a previous transaction. If your
payment gateway supports refunding, you can perform this task from the Storefront Administration module, otherwise you
will need to perform the refund from your own merchant virtual terminal.

To refund a payment, go to the Storefront administration's Sales > Orders screen. Select the desired sales order. Under
the Payment tab, look for the "Purchased" or "Captured" transaction entry. Only these transaction types can be refunded.
Click on the record to edit the payment. If this is a partial refund, modify the dollar amount to refund (e.g. enter 10.00 to
refund $10.00) or leave the default value to refund the full amount. Click on the Refund button. If the refund is successful,
a new payment record will be created to indicate the refund transaction and the new sales order's balance due will be
recalculated.

Please note the Manual refund button does not actually refund any money but merely records the transaction in your
Storefront for your own historical keeping. You must refund through your own merchant virtual terminal.

Preorders
A preorder is used to temporarily hold the order for a short period of time awaiting for customer approval, product inventory
or some other reason. A preorder is simply an order with the status of "Preordered". It is a way to indicate that the order
has all the billing, shipping and all other information necessary to calculate the total amount due but has not yet been
actualized. Because a preorder is fully calculated, it is sufficient to be used to send an invoice to the customer to request
payment or approval.

Preorder for recurring products

For example, if you sell recurring orders (subscriptions) and you need to invoice your customers ahead of time, you can
benefit by configuring the Storefront to pre-generate the orders days ahead of the actual renewal date. A preorder is useful
for companies that have their own purchasing department. These customers often require an invoice before approving any
payment. It is also a good way to notify customers ahead of time so they can ensure their payment information are up-to-
date.

For a recurring product, you can configure your product variant to preorder by the number of days ahead of the actual
recurring date.

Preorder for pre-selling products

Another good use of preorder is to pre-sell products that are not yet available. For example, if your business sells mobile
phones and you're accepting preorders for the next generation of iPhones that has not yet been released.

Make sure to create the product first and optionally set the inventory value to zero. You can then collect all the customer
information by phone and create a preorder for them. Make sure to set the Order date to a date in the future when you
think this order should be actualized. As soon as the product inventory becomes available, you can manually actualize the
order or let the system do it.

Alternatively, you can also create a deferred product to collect payment at a later date. Please see How to create a
deferred product (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-deferred-
product/rvdwkpvm/section) for more information.

Automatically actualizing the order

Just like a regular order, you can capture payment manually and convert the preorder to an order. You can also allow the
system to automatically convert the preorder for you and capture payment if a suitable preferred user payment is set. You
may need to enable the Sales order feature under Configuration > General settings first. Then under Configuration >
Sales order, you can set the Preorder process behavior to automatically process the preorders due. The preorders will
be actualized based on their future Order dates.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-create-a-deferred-product/rvdwkpvm/section

How to accept offline orders
There are several ways you can handle offline orders (orders that come in by phone, fax, in-person, etc.).

Creating offline orders by impersonating as the customer

The easiest way to take offline orders is to open a new browser, register the user and go through the shopping checkout as
the customer would. If the user account already exists, you may choose to use Revindex Impersonator
(http://www.revindex.com/ProductDetail/tabid/138/rvdsfpid/revindex-impersonator-1-0-4/Default.aspx) to quickly login as
the customer for the purpose of placing the order on his behalf, and easily restore back to your account once done.

Creating offline orders directly from the sales admin screen

You can also create new orders from the Sales > Orders menu in the Storefront module just like you could edit an existing

order.

1. Click Add new

2. Click on edit user icon if you need to create the user account first, otherwise enter the username.

3. Fill the form (billing, shipping address, etc.). If this is for an existing user, you can select from Use address
book dropdown to populate addresses. You can also use the Copy from billing to populate the shipping address.

4. Click Save.

5. Under the Order detail section, click Add new to add products to the order.

6. Search for the product to add in the dropdown list.

7. Fill any required fields in the form (quantity, custom fields, etc.).

8. Click Save order detail.

9. If your products require shipping, you want to go back to the order and select a packing method and one of shipping
methods and Save.

10. Click Recalculate all to recalculate the total amount, shipping, handling and taxes. Adjust the selected shipping
method as needed.

11. Under the Payment tab, click Add new.

12. Enter the amount equivalent to the total amount calculated for the order.

13. Select the payment method and fill the required fields.

14. Click Purchase or Authorize to take the payment.

15. Click Decrement inventory to reduce inventory of your products

http://www.revindex.com/ProductDetail/tabid/138/rvdsfpid/revindex-impersonator-1-0-4/Default.aspx

16. Click Run place order action to execute any product or checkout actions you have.

17. Click Email receipt to send the order receipt to the customer.

18. Remember to change the order, payment and shipping statuses (e.g. "Completed", "Paid", "Shipped") once you're
done with the order.

Why do order numbers skip?
Starting with v6.5, Revindex Storefront maintains its own sequence ensuring order numbers are sequential and
continuous. This improvement is especially important to ensure compliance with tax regulations (e.g. UK VAT laws
(http://www.hmrc.gov.uk/vat/managing/charging/vat-invoices.htm) and New York tax laws
(http://www.tax.ny.gov/pubs_and_bulls/tg_bulletins/st/record-keeping_requirements_for_sales_tax_vendors.htm) require
that order numbers be serially continuous and any skipped numbers must be justified to the auditor or be subjected to
penalties).

For older Storefront versions, on rare occasion, you may notice that your order numbers may have skipped some numbers

(e.g. 1,2,3,5...). This is perfectly normal and does not indicate a lost of order. Revindex Storefront makes extensive use of SQL

transactions to maintain database integrity. SQL server guarantees an identity sequence column to be unique but is allowed to

skip a number when the transaction is rolled back or cancelled.

Furthermore, as of SQL Server 2012 and newer, order numbers may skip by as large as 1000 when the database server is
restarted due to the new identity seeding algorithm used in Microsoft SQL Server. This behavior affects any database table
and is not limited to Revindex Storefront tables. Because Revindex Storefront 6.5 and newer generates its own order
number, it is immune from this problem. For older versions of Revindex Storefront, you can configure SQL Server to use
the old method of allocating identity numbers by following the steps below:

1. Open SQL Server Configuration Manager.

2. Click SQL Server Services on the left pane.

3. Right-click on your SQL Server instance name on the right pane to open the Properties window. The default instance is

"SQL Server(MSSQLSERVER)".

4. Click Startup Parameters.

5. On the "Specify a startup parameter" textbox, type "-T272"

6. Click Add.

7. Confirm the changes.

http://www.hmrc.gov.uk/vat/managing/charging/vat-invoices.htm
http://www.tax.ny.gov/pubs_and_bulls/tg_bulletins/st/record-keeping_requirements_for_sales_tax_vendors.htm

How to auto delete incomplete orders
Incomplete orders are orders placed by customers that haven't completed checkout. For example, a customer adds a
product to his cart but failed to complete checkout due to insufficient funds in his credit card and decided to hold off the
purchase. Keeping record of incomplete orders presents an opportunity to lure the customers back via cart abandon email
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/cart-abandon-email/rvdwkpvm/section) and
provides good statistical information to better understand the shopping behavior of your customers. However, as time
passes, it may be useful to delete some of these incomplete orders to shrink the amount of data and clutter.

To automatically delete incomplete orders, you must first enable the Sales order feature under Configuration > General.
Once enabled, you can enter a value for the Days before deleting incomplete orders under Configuration > Sales
order setting. Generally, the number of days should be greater than your cart abandon
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/cart-abandon-email/rvdwkpvm/section) and
session timeout (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-increase-cart-session-
time/rvdwkpvm/section) settings to avoid deleting an active customer cart still in progress.

Remember to consider the implications of deleting incomplete orders whether for statistics or tax liabilities. Once deleted,
the orders cannot be retrieved.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/cart-abandon-email/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/cart-abandon-email/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-increase-cart-session-time/rvdwkpvm/section

How to delete all orders
For your security, we currently do not support deleting orders. Instead, we suggest you cancel the orders.

If you have only been testing and need to delete all orders before starting production, you can try to execute these SQL
queries. Please make sure to take a full backup, run the queries and test your system afterwards.

We don't support nor encourage deleting orders. Use at your own risk.

DELETE FROM Revindex_Storefront_RecurringSalesOrder
DELETE FROM Revindex_Storefront_VoucherHistory
DELETE FROM Revindex_Storefront_Voucher
DELETE FROM Revindex_Storefront_RewardsPointHistory
DELETE FROM Revindex_Storefront_SalesPayment
DELETE FROM Revindex_Storefront_SalesOrderDetail
DELETE FROM Revindex_Storefront_SalesOrder

Recurring Orders
If you sell subscription products, your customer may have active recurring orders in the system that will automatically re-
order and charge the customer according to the recurring interval set for the product. You must first enable the Recurring
orders feature under Configuration > General to use this functionality. Once enabled, you can search and manage
customer recurring orders from the Sales > Recurring Orders menu. From this page, you can terminate a recurring order,
change the next recurring date, modify the quantity and update the billing and shipping information.

Re-orders occur on day of the Next recurring date. You can delay or reset a recurring order by modifying the Next
recurring date value.

A re-order happens in the system background and will create a new order entry visible under Sales > Orders menu. It is
important that you verify that the order and payment are valid. If a customer has multiple recurring orders with the same
billing and shipping information, by default, the Storefront is configured to automatically group the set of recurring orders
into a single new order at the moment of the re-ordering to minimize shipping charges and payment transaction fees. You
can also configure recurring orders so that they don't group together.

Depending on the payment gateway being used, a recurring order may be created with or without a corresponding
payment. If an automatic payment failed (e.g. credit card expired) or is not able to be created (payment gateway doesn’t
support recurring orders), you will have to manually contact the customer to collect payment. Please see the Payment
Gateways section for more information.

If you're running tests on a development/staging machine with production data copied over and you sell recurring
products, make sure to disable any recurring orders or change the payment gateway credentials, otherwise it will
automatically charge your customer's credit card when the order is due for renewal.

Bookings
You must first enable the Booking products feature under Configuration > Product settings. Once enabled, you can get
a high level view or all your booked orders from Sales > Bookings menu. You can switch between daily, weekly, monthly
or full timeline view to see differently levels of detail. Clicking on individual entries will allow you to manage the booked
order. Please see Booking products (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/booking-
products/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/booking-products/rvdwkpvm/section

Rights
A right is a secret code (license key, serial number, password, etc.) that is usually used to unlock access to a virtual
product that you can issue from your Storefront. Please see Rights (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/catalog-rights/rvdwkpvm/section) for more information on how to create different types of rights.

You must first enable the Rights feature under Configuration > General settings. Once enabled, you can access
the Sales > Rights menu to view, modify or issue new rights based on the right definitions you previously created.
Unassigned rights stored here are ready to be issued to a new customer when they purchase your product. Customer will
receive an email with their codes and can view their rights from the Manage Right module. Please see Manage Rights
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/manage-rights/rvdwkpvm/section) for more
information.

For security purposes, access rights are only issued once the order is marked as "Paid" or "Completed". You can also
search for rights that have already been issued.

To create multiple rights in bulk, you may import then into the Storefront. Please see Import and Export
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-and-export/rvdwkpvm/section) for more
information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-rights/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/manage-rights/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-and-export/rvdwkpvm/section

Vouchers
A voucher is a special form of payment method carrying a predefined monetary value that you can issue from your
Storefront. It can only be used to redeem for purchases made on your site using a special code that the customer is
required to enter. Common examples include gift cards, gift certificates, store credits, etc.

You must first enable the Voucher feature under Configuration > General. Once enabled, you can access the Sales >
Vouchers menu to view, modify or issue new vouchers based on the voucher definitions you previously created. Please
see Vouchers (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-
vouchers/rvdwkpvm/section) for more information. Each voucher carries a unique code that cannot be changed once
issued. A voucher also has a running balance that will decrement when being used by the customer to purchase a product.
Any monetary changes to the voucher by the store operator or by the customer making a purchase will be recorded under
its history tab.

Only vouchers with an Active status can be used for checkout. Since vouchers are usually printed to a physical medium
and given away (e.g. gift card, gift certificate), it is recommended that you do not delete a voucher as it becomes
unrecoverable. Instead, set its status to Cancelled, Hold or Inactive to prevent usage. For security purposes, the voucher
codes are strongly encrypted in the database to protect against hackers compromising your data and invalidating your
customer voucher codes that have been issued. Voucher codes should be kept safely from unauthorized access on a need
to know basis.

To create multiple vouchers in bulk, simply enter the desired quantity after clicking on the Add new button prior to saving.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-vouchers/rvdwkpvm/section

Marketing

Coupons
Create coupons from the Marketing > Coupons menu. Coupons are simply unique codes that you create to give to your
customers and for them to hand-in during checkout. It’s a useful way to limit a promotion given out to only those who have
the code (e.g. give 10% discount to only users who read your newsletter).

Coupons by themselves do not perform any action. They need to be associated to a marketing promotion or place order
action rule. During checkout, the promotion and place order action rules can trigger against the collected coupon codes
and determine what discount or action to take. Only promotion types that occur during checkout stage can trigger against
coupon codes collected (i.e. Sales Order Detail, Shipping, Handling, Tax promotion types). Please see Promotions
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/promotions/rvdwkpvm/section) section for
more information. Place order action rules can also trigger against the collected coupon codes and perform actions such
as assigning a security role. See Actions (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/checkout-actions/rvdwkpvm/section) section for more information.

You can control when a coupon is valid using the Start and Stop date fields. You can also limit the number of available
coupons using the Inventory field. The available coupons will be decremented by one every time a coupon is remitted.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/promotions/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/checkout-actions/rvdwkpvm/section

Coupon Availability
The coupon availability rule can be used to decide when and how a coupon can be used. For example, you may not allow
the coupon to be combined with other coupons or you may want to limit the number of times a coupon can be used by the
same user.

The coupon availability rule can also use XSL transform to determine whether this coupon is available for use. For
example, you may restrict the coupon to a single use per customer or the coupon should not be allowed to combine with
another coupon. You can also restrict the coupon to members only. The expected output should return "true" to indicate
this coupon is available for use under the input conditions, otherwise "false" if disallowed. The Storefront comes with
several pre-defined rules that you can simply modify the values without needing to know XSL. To learn more about
XSL, please see the XSL Transform section.

Promotions
Revindex Storefront supports your most creative promotion rules to help you sell more. Promotions are created from the
Marketing > Promotions menu. Promotions can apply to different levels of the shopping cart from product, sales order
detail, shipping, handling to tax types. You can set the promotion to run only within a time frame using the Start and Stop
Date fields. The Run order determines which promotions within its type should execute first. For example, you may have a
product type promotion that gives 10% discount on all items and another product type promotion that gives 50% discount
on discontinued products, but it shouldn’t include the first 10% discount (i.e. you don’t want to give 50% discount on top of
the 10% already discounted). In this case, you would run the 10% discount first and let the 50% discount run second with
business logic to cancel the first discount.

Handling Type Promotion
A handling type promotion allows you to offer a discount on handling fees during checkout (e.g. no handling fees on all
products, or no handling fees if a coupon is presented). Customers will see the discount applied to the handling fee during
checkout.

The promotion rule can also use XSL transform for complex promotions. The expected output should return the discount
amount (a negative value) to apply, otherwise zero if no discount is to be given. The Storefront comes with several pre-
defined rules that you can simply modify the values without needing to know XSL. To learn more about XSL, please
see the XSL Transform section.

Product Type Promotion
A product type promotion allows you to offer a storewide price promotion on products (e.g. 10% discount on all the
products in your store, or 10% discount on all products belonging to a category or perhaps even an additional 5% to
members only on top of the first discount). Customers will see the discounted price before adding item to the shopping
cart.

The promotion rule can also use XSL transform and will apply on products described in the rule. The expected output
should return the discounted promotion price, otherwise the regular price. The Storefront comes with several pre-defined
rules that you can simply modify the values without needing to know XSL. To learn more about XSL, please see the
XSL Transform section.

Sales Order Detail Type Promotion
A sales order detail type promotion allows you to offer a discount on purchases during checkout (e.g. buy 2 for the price of
1, or get additional 10% discount if a coupon is presented). Customers will see the discount applied during checkout.

The promotion rule can also use XSL transform. The expected output should return the discount amount (a negative value)
to apply, otherwise zero if no discount is to be given. The Storefront comes with several pre-defined rules that you can
simply modify the values without needing to know XSL. To learn more about XSL, please see the XSL Transform section.

Shipping Type Promotion
A shipping type promotion allows you to offer a discount on shipping during checkout (e.g. free shipping on all products, or
free shipping if a coupon is presented). Customers will see the discount applied to the shipping fee during checkout.

The promotion rule can also use XSL transform for complex promotion. The expected output should return the discount
amount (a negative value) to apply, otherwise zero if no discount is to be given. The Storefront comes with several pre-
defined rules that you can simply modify the values without needing to know XSL. To learn more about XSL, please
see the XSL Transform section.

Tax Type Promotion
A tax type promotion allows you to offer a discount on taxes during checkout (e.g. No tax charges on Friday, or no tax if a
coupon is presented). Customers will see the discount applied to the handling fee during checkout.

The promotion rule can also use XSL transform for complex promotions. The expected output should return the discount
amount (a negative value) to apply, otherwise zero if no discount is to be given. The Storefront comes with several pre-
defined rules that you can simply modify the values without needing to know XSL. To learn more about XSL, please
see the XSL Transform section.

Access Control
Limit access to the Storefront module control can be controlled via the standard permissions module settings in DNN. You
can restrict view or edit access to parts of the management screen to a selected number of employees in your company.

Log Level
You can configure how much information is being logged to the site's Event Viewer by configuring the log level under
Configuration > General. Currently, you can choose between errors only or include debug messages.

The debug log level is useful for displaying actual XSL transform input, response data from shipping providers and
payment gateways.

The debug log level writes a lot of data including all errors to the Event Viewer and may have an impact on
performance. It is recommended to use error log level when in production.

To enable debugging, you must first make sure your Event Viewer is able to capture debug logs by following the steps
below:

1. Under your site's Admin > Event Viewer page, click on Edit Log Settings.

2. If you don't see "Debug Info" active in the list, click on Add Log Setting.

3. Tick the Logging Enabled checkbox and choose Log Type = "Debug Info". Click Update.

Now, you need to tell the Storefront to start logging in debug more

1. Under your Storefront administration Configuration > General settings, select Log Level = "Debug".

Category
The Category module control displays the categories used for grouping products and helps improve the browsing
experience. It is recommended to place this module on the left or right side pane on your page and set it to appear on all
pages visible for all users. You may rename the module title to something friendlier like “Categories”.

To change the look-and-feel using a custom display template, set the Display template value from the Configuration >
Category menu.

How to expand all categories
The latest Revindex Storefront uses a Telerik RadTreeView control to render the categories. To expand all the categories,
you can create a custom display template and add a OnClientLoad event with some javascript.

<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="Display.ascx.cs"
Inherits="Revindex.Dnn.RevindexStorefront.Portals._default.Display.Category.Standard3.Display" %>
<%@ Register Assembly="DotNetNuke.Web.Deprecated" Namespace="DotNetNuke.Web.UI.WebControls" TagPrefix="dnn2" %>

<div class="rvdsfCategoryContainer">
 <dnn2:DnnTreeView ID="CategoryDnnTreeView" runat="server" ShowLineImages="false"
CssClass="rvdsfCategoryTreeView" Skin="" OnClientLoad="CategoryDnnTreeView_Loaded">
 <NodeTemplate>
 <a href='<%# DataBinder.Eval(Container, "NavigateUrl") %>'>
 <%# DataBinder.Eval(Container, "Text") %>
 </NodeTemplate>
 </dnn2:DnnTreeView>
</div>

<script type="text/javascript">
function CategoryDnnTreeView_Loaded(treeView, args)
{
 var nodes = treeView.get_allNodes();
 for (var i = 0; i < nodes.length; i++)
 {
 if (nodes[i].get_nodes() != null)
 nodes[i].expand();
 }
}
</script>

1
2

3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

How to add categories to Web site menu

By default, the Storefront displays your categories on the Category module, which can be placed anywhere on your page.
Please see for more information.

If you also like the categories to appear on your Web site's main menu, you simply need to create actual pages and link to
the category URL. Fortunately, most categories are relatively static and remains unchanged once created.

1. We recommend you first navigate to the page where you currently have the Category module so you can refer to it
to find the category URL easily as you'll be doing a lot of repetitive copy and paste.

2. Hover over your Category module and copy the first category URL.

3. Click on DNN:Pages > Add New Page to add a new page.

4. Give the new page the same name as your category (e.g. "Cameras")

5. Select the appropriate Parent Page dropdown if this category should belong underneath a parent category.

6. Make sure to select the Include In Menu checkbox.

7. Under the Permissions tab, make sure to allow View Page permission to All Users.

8. Under the Advanced Settings tab and scroll to Other Settings section. In the Link URL property, select
the URL type and paste your category URL. Select the Permanently Redirect checkbox to optimize for SEO
ranking.

9. Save and repeat the steps above for all your other categories.

Distributor
The Distributor module control displays the distributors used for navigating products by brands. It is recommended to
place this module on the left or right side pane on your page and set it to appear on all pages visible for all users. You may
rename the module title to something friendlier like "Suppliers" or "Distributors".

To change the look-and-feel using a custom display template, set the Display template value from the Configuration >
Distributor menu.

Manufacturer
The Manufacturer module control displays the manufacturers used for navigating products by brands. It is recommended
to place this module on the left or right side pane on your page and set it to appear on all pages visible for all users. You
may rename the module title to something friendlier like "Brands" or "Manufacturers".

To change the look-and-feel using a custom display template, set the Display template value from the Configuration >
Manufacturer menu.

Product List
The Product List module control lists all the products associated with the user-selected category. This module should be
visible to all users. The module title automatically changes to take the category name. If a product is marked as “Featured”,
the product will be displayed on the Product List module control even if no category is selected.

To change the look-and-feel using a custom display template, set the Display template value from the Configuration >
Product list menu.

Hosting Multiple Module Controls
The Storefront supports hosting more than one instance of this module on the Web site. This is useful for displaying
featured products on a different page like the home page. In this case, you would create a custom Product List display
template from the Configuration > Display templates menu. In the custom template, you can force it to display products
from a specific category by setting the ASP.NET hidden Value property to the category’s ID value.

<asp:HiddenField ID="OverrideCategoryIDHiddenField" runat="server" Value="57" />

Then, return to the new module instance and click on Edit Content from the module’s Action menu to change the display
template.

Now you have two instances running, you need to mark the one of the two module instances as the default instance where
all category navigation will point to. You can mark as default instance from the Edit Content on the module action menu.

How to change default sort order
To change the product list to sort by a different order:

1. Create a custom display template from the Storefront's Configuration > Display templates menu.

2. Select the "Product list" module control and Add new.

3. Give the new custom display template a name (e.g. CustomProductList)

4. Always choose the latest Base display template with the highest version number.

5. Look for the desired sort order line and add the Selected="True" attribute as shown in the example below:

<asp:DropDownList ID="PageViewDisplayOrderDropDownList" runat="server" AutoPostBack="True"
OnSelectedIndexChanged="PageViewDisplayOrderDropDownList_SelectedIndexChanged">
<asp:ListItem Value="1"
resourcekey="RecommendedPageViewDisplayOrderListItem">Recommended</asp:ListItem>
<asp:ListItem Value="2" resourcekey="ProductNameAZPageViewDisplayOrderListItem" Selected="True" >Product
Name A to Z</asp:ListItem>
<asp:ListItem Value="3" resourcekey="ProductNameZAPageViewDisplayOrderListItem">Product Name Z to
A</asp:ListItem>
<asp:ListItem Value="4" resourcekey="PriceLowHighPageViewDisplayOrderListItem">Price Low to
High</asp:ListItem>
<asp:ListItem Value="5" resourcekey="PriceHighLowPageViewDisplayOrderListItem">Price High to
Low</asp:ListItem>
<asp:ListItem Value="6" resourcekey="RatingLowHighPageViewDisplayOrderListItem">Rating Low to
High</asp:ListItem>
<asp:ListItem Value="7" resourcekey="RatingHighLowPageViewDisplayOrderListItem">Rating High to
Low</asp:ListItem>
</asp:DropDownList>

6. Save the display template.

7. Under Configuration > Product list menu, set the Display template to your newly created custom display
template.

How to change the number of grid columns
By default, the product list displays products arranged in grid view format of 2 columns. In order to change the number of
columns, you need to:

1. Create a custom display template from the Storefront's Configuration > Display templates menu.

2. Select the "Product list" module control and Add new.

3. Give the new custom display template a name (e.g. CustomProductList)

4. Always choose the latest Base display template with the highest version number.

5. Look for the following line and change the GroupItemCount attribute value to the number of columns you wish to
render:

<asp:ListView ID="ProductListListView" runat="server" GroupItemCount="2"
OnPagePropertiesChanging="ProductListListView_PagePropertiesChanging"
OnItemDataBound="ProductListListView_ItemDataBound" DataKeyNames="ProductVariantID"
OnItemCommand="ProductListListView_ItemCommand">

6. Save the display template.

7. Under Configuration > Product list menu, set the Display template to your newly created custom display
template.

How to change page size
By default, the product list module control offers different selection choice of page size that affects the number of items
displayed on the page at a time (e.g. 10, 20, 50). If you want to change the default selection, you can simply create a
custom display template for the Product list module control and apply for the following changes. Please see Display
Templates (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/display-
templates/rvdwkpvm/section) for more info. Look for the following lines below and add a Selected="true" attribute to the
desired list item.

<asp:DropDownList ID="PageViewSizeDropDownList" runat="server" AutoPostBack="True"
OnSelectedIndexChanged="PageViewSizeDropDownList_SelectedIndexChanged">
<asp:ListItem Value="10" resourcekey="TenPageViewSizeListItem">10</asp:ListItem>
<asp:ListItem Value="20" resourcekey="TwentyPageViewSizeListItem" Selected="true">20</asp:ListItem>
<asp:ListItem Value="50" resourcekey="FiftyPageViewSizeListItem">50</asp:ListItem>
<asp:ListItem Value="100000" resourcekey="AllPageViewSizeListItem">All</asp:ListItem>
</asp:DropDownList>

You can also change the number value of the list items (e.g. from 10 to 100 if you want to change the available page
sizes). You will also need to change the text for the resource key pertaining to your custom display template that appears
on screen from the static localization. Please see Static Localization and Language Packs

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/static-localization-and-language-

packs/rvdwkpvm/section) for more info.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/display-templates/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/static-localization-and-language-packs/rvdwkpvm/section

How to default to list view
By default, the product list displays products arranged in grid view format. In order to change the product list to display in
list view by default, you need to:

1. Create a custom display template from the Storefront's Configuration > Display templates menu.

2. Select the "Product list" module control and Add new.

3. Give the new custom display template a name (e.g. CustomProductList)

4. Always choose the latest Base display template with the highest version number.

5. Look for the following line and add the Selected="True" attribute:

<asp:ListItem resourcekey="ListPageViewModeListItem" Value="List" Selected="True">List</asp:ListItem>

6. Save the display template.

7. Under Configuration > Product list menu, set the Display template to your newly created custom display
template.

When in grid view, the HTML includes the CSS class "rvdsfPageViewModeGrid" and when in List view, the CSS class is
"rvdsfPageViewModeList". You can use this information to customize the CSS to format the list and grid layout nicely to the
way you want.

How to force products from a category
If you have multiple product list modules on different pages and you would like to specialize them to show products from a
certain category when no category is being selected, you can do so using a custom display template. SeeDisplay Templates

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/display-templates/rvdwkpvm/section) for more

information.

1. Under Configuration > Display templates menu.

2. Click Add New.

3. Select "Product List" module control.

4. Give your template a name (e.g. "CustomCookware").

5. Look for the following line and enter the desired Category ID in the Value attribute.

<asp:HiddenField ID="OverrideCategoryIDHiddenField" runat="server" Value="12" />

6. Save.

7. Create your special page.

8. Add the Product List module to your special page.

9. Under the module's Settings.

10. Set it to use the custom display template you created.

11. Select the default checkbox if you like this page to act as the default product list module on your site.

12. Update.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/display-templates/rvdwkpvm/section

How to show featured products
The usual behavior of the product list is to display products primarily based on the selected category (e.g. "Cookware") and
among other criteria. It's important to understand that when the customer first lands on your product list page, no category
is initially being selected. You need to decide if you intend to show all your products or only the selected few products. If
you have thousands of products, it is strongly recommended to show only a subset of products for performance reasons,
typically your best selling featured products.

To show only the subset of products when no category is selected, you must mark your desired product's as "Featured"
under the product's Category tab. So it follows that if you want to show all products when no category is selected, you will
need to mark all your products as featured.

Product Detail
The Product Detail module control displays the detailed information of the product to the customer. This module should be
visible to all users. The module title automatically changes to take the product name.

When in page edit mode, you can also quickly edit your product simply by clicking on the Edit product link. This will direct
you the product's administration page and allows you go back and review your changes easily.

To change the look-and-feel using a custom display template, set the Display template value from the Configuration >
Product detail menu.

Hosting Multiple Module Controls
The Storefront supports hosting more than one instance of this module on the Web site. This is useful to single out a
special product item on a different page for a promotional campaign. In this case, you would create a custom Product
Detail display template from the Configuration > Display templates menu. In the custom template, you can force it to
display a specific product by setting the ASP.NET hidden Value property to the product’s ID value.

<asp:HiddenField ID="OverrideProductIDHiddenField" runat="server" Value="12" />

Then, return to the new module instance and click on Edit Content from the module’s action menu to change the display
template.

Now you have two instances running, you need to mark the one of the two module instances as the default instance where
all product list navigation will point to. You can mark as default instance from the Edit Content on the module action menu.

How to force product
If you like to display a single product somewhere on a special page (e.g. you have a special landing page that needs to
show a single product that you sell), you can do so using a custom display template. See Display Templates
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/display-templates/rvdwkpvm/section) for more
information.

1. Under Configuration > Display templates menu.

2. Click Add New.

3. Select "Product Detail" module control.

4. Give your template a name (e.g. "AsSeenOnTV").

5. Look for the following line and enter the desired Product ID and optionally the Product Variant ID if you have more
than one variant in their respective Value attribute.

<asp:HiddenField ID="OverrideProductIDHiddenField" runat="server" Value="9" />
<asp:HiddenField ID="ProductVariantIDHiddenField" runat="server" Value="12" />

6. Save.

7. Create your special page.

8. Add the Product Detail module to your special page.

9. Under the module's Settings.

10. Set it to use the custom display template you created.

11. Select the default checkbox if you like this page to act as the default product detail module on your site.

12. Update.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/display-templates/rvdwkpvm/section

How to set number of related products
To change the number of related products displayed on the product detail page, you need to create a custom display
template for the Product detail module control and edit the PageSize number in your template.

1. Create a custom display template from the Storefront's Configuration > Display templates menu.

2. Select the "Product detail" module control and Add new.

3. Give the new custom display template a name (e.g. CustomProductDetail)

4. Always choose the latest Base display template with the highest version number.

5. Look for the following line and change the PageSize attribute value to the number of products you wish to display:

<asp:DataPager ID="RelatedProductDataPager" runat="server"
OnPreRender="RelatedProductDataPager_PreRender" PagedControlID="RelatedProductListView" PageSize="3">

6. Save the display template.

7. Under Configuration > Product detail menu, set the Display template to your newly created custom display
template.

Product Filter
The Product Filter module control is optionally used beside the product list module control to refine results. The filter
works against product attribute definitions assigned to a product or variant. The product attribute definition (Catalog >
Attributes definitions) must be marked as "Filterable" in order to be listed in the filter. Currently, only Boolean, Decimal,
Integer and Selection attribute definition types can be filtered. See Product attributes
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-product-
attributes/rvdwkpvm/section) for more info. You can also filter against certain core product properties such as the price,
manufacturer and distributor.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-product-attributes/rvdwkpvm/section

Product Search
The Product Search module control is optionally used beside the product list module control to search for products only.
The search works against product name, description and attribute definitions assigned to a product or variant. The product
attribute definition must be marked as "Filterable" in order to be searchable. The search uses keyword indexing for faster
performance and reduces the database load on your server.

It uses the powerful Lucene search that allows wildcard, fuzzy and boolean matches.

Type Example Notes

Fuzzy ~ Contain terms that are close to the word kettle, such as cattle

Wild cat*
Contain terms that begin with cat, such as category and the
exact term cat itself

Exact-
Single

orange Contain the termorange

Exact-
Phrase

"wiki is awesome" Contain the exact phase wiki is awesome

OR orange bike
Contain the term orange or bike, or both. OR, if used, must
be in uppercase

orange OR bike

AND orange AND bike Contain both orange and bike. AND must be in uppercase

Combo (agile OR extreme) AND methodology
Contain methodology and must also
contain agile and/or extreme

How search works
The Storefront product search makes use of the DNN internal search indexer to improve query performance and accuracy.
Therefore, when you create a new product, it doesn't get indexed immediately until your DNN search scheduler has ran.
Certain systems are configured to index the content once a day. You can force the search to re-index immediately by going
to the Host > Schedule page and clicking on the Search: Site Crawler task and clicking on the Run Now button or you
can configure it to run more frequently.

The following requirements must be met in order to properly index your products:

1. The Product Detail module definition under Host > Extensions must support the Searchable interface.

2. The Product Detail module must be publicly visible by all users.

3. The Product Detail module must have the Allow Indexing enabled.

4. The page hosting the Product Detail module must be publicly visible by all users.

5. The page hosting the Product Detail module must also have the Allow Indexing enabled.

6. The Product Detail module must have the LastContentModifiedOnDate greater than the last known time when the
indexer ran for the Product Detail module.

7. Individual products must have an UpdateDate that is greater than the last known time when the indexer ran for the
Product Detail module.

By default, the DNN search indexer will not index any keyword shorter than 4 characters and longer than 50 characters,
and may omit certain common words and numbers. You can change this configuration under the Host > Host Settings
(see Search Settings section) and the Admin > Search Admin page.

Product Showcase
The Product Showcase module control is optionally used to promote one or many featured products, newest products,
random products, etc. on your pages. It can be laid out horizontally or vertically with auto scrolling or using buttons by
configuring the settings under Configuration > Product showcase or from the Edit Content action menu for each
module control instance.

Product Comparison
The Product Comparison module control allows the customer to easily pick and compare different products in a grid view.
Set this module control to appear on the page for all users.

Any product attribute defined for a product that are marked comparable and published will also appear in the product
comparison grid. To change the look-and-feel using a custom display template, set the Display template value from
the Configuration > Product comparison menu. You can also limit the maximum number of items to compare at a time
to better fit your template and reduce server load.

Cart Summary
The Cart Summary module control provides a quick display of the items currently in the shopping cart. It is recommended
to place this module on the header, left or right side pane on your page and set it to appear on all pages visible for all
users. You may rename the module title to something friendlier like “Cart Summary”.

To change the look-and-feel using a custom display template, set the Display template value from the Configuration >
Cart summary menu. You can change the acceptance marks the same way you modify any localization static text under
the site Admin > Languages menu.

How to change payment acceptance mark
The payment acceptance mark helps visually indicate to your customers the different form of payment methods that are
accepted during checkout such as Amex, MasterCard or Amex. It can be changed in the same way as any static text
through the site's Admin > Languages page. Click on edit for the site and language of your choice.

Drill down the tree node, where <_default> is the standard templates or your portal number if you have created custom
display templates. <StandardX> is which ever template version you're currently using.

Local Resources
 DesktopModules
 Revindex.Dnn.RevindexStorefront
 Portals
 <_default>
 Display
 CartSummary
 <StandardX>
 App_LocalResources
 Display.ascx

Look for the resource name and change the text (or HTML) to how you want it to be shown. Save and your cart summary
will start using the new localized acceptance mark.

PaymentAcceptanceMarkLabel.Text

Cart
The Cart module control displays products that have been added to the shopping cart. This module should reside on a
SSL secure page visible to all users. To change the look-and-feel using a custom display template, set the Display
template value from the Configuration > Cart menu.

Customers can remove or adjust the quantity of the items in the shopping cart before proceeding with the checkout.

If the customer is not already signed in, the customer will be presented with a login or register screen after clicking on
the Proceed to Checkout button.

How to increase cart session time
By default, products added to cart will stay available for the same duration as your session is active. You must first enable
the Cart feature under Configuration > General. Once enabled, you can configure a longer duration simply change the
session timeout value in seconds under Configuration > Cart menu. This is a sliding expiry, which means as long as the
customer continues to interact with the shopping cart, it will extend the session for another amount of period.

How to cleanup on logout
By default, Revindex Storefront will automatically clear the cart when a registered user logs out from your site. This
security measure prevents other users sharing the same computer from viewing the cart items of another user.

If you want to perform additional clean up tasks after a user logs out, you can do so using a special page that will be

redirected after logout by following the steps below:

1. Give your page a name e.g. "Logout".

2. Uncheck the Include in Menu checkbox.

3. Set the page permission to allow only "Unauthenticated Users".

4. Click Update to save.

5. On the newly created page, add the Razor Host module to the page.

6. On the action menu, click Edit script.

7. Click Add new script file.

8. Choose "CSHTML (C#)" file type.

9. Give it a file name (e.g. "Logout.cshtml")

10. Click Add new script.

11. Select the script you created. It may have an underscore prefix to the name.

12. Replace the Script Source with this code:

@{
 // Perform your steps here such as expiring cookie, closing session, clear cache, etc.
 Session.Abandon();
 Response.Cookies.Add(new HttpCookie("ASP.NET_SessionId", ""));
 Response.Cookies.Add(new HttpCookie("rvdsfcart|0", "") { Expires = DateTime.Now.AddDays(-1d) });

 // Uncomment the line below if you want to redirect to your home page.
 // Warning: Once you uncomment it, you won't be able to access this page
 // anymore since it will redirect immediately.
 // You will have to go to your local folder to edit this script
 // under DesktopModules\RazorModules\RazorHost\Scripts\<file>.cshtml.
 // Response.Redirect("~/", false);
}

13. Check on the Is Active checkbox.

14. Click Save Script and Return.

15. Go to your Admin > Site Settings page.

16. Under the User Accounts Settings tab, change the Redirect After Logout dropdown to your newly created page.

17. Click Update.

Checkout
The Checkout module control performs the checkout process. This module should reside on a SSL secured page visible
to all users. To change the look-and-feel using a custom display template, set the Display template value from
the Configuration > Checkout menu.

The checkout process is a step wizard. The first step is collecting customer billing and shipping information. The customer
can select an existing address from his address book for quick fill. At this time, the customer can also apply coupons if
applicable.

You can add dynamic fields to collect additional information by providing your HTML/ASP.NET code using the Dynamic
form from the Configuration > Checkout menu.

The 2 step allows the customer to review the total charge before placing the order or go back to the previous screen to
correct information.

If the order processed successfully, the customer will be redirected to the confirmation page, otherwise an error message
will be presented to the customer allowing him to make adjustments and retry.

nd

Anonymous Checkout
You must first enable the Checkout feature under Configuration > General to access this functionality. You can enable
anonymous checkout mode to speed up the checkout process for customers by selecting the Enable anonymous
checkout option from the Configuration > Checkout menu. The Storefront will automatically create a new guest account
for the anonymous shopper upon placing order bypassing the standard login and registration forms in a normal checkout
process. In anonymous mode, the customer will not be able to login to their newly created account unless you explicitly
provide the login and password to the customer.

It's important to understand the Storefront creates a new account with the customer's email address captured during
checkout. By default, your site allows multiple accounts with the same email address. If, however, you have explicitly
enabled the Requires unique email address under Admin > Site Settings page, the Storefront will not be able to create
the guest account if the email has already been used before. In such cases, you must also enable the Reuse anonymous
account under the Configuration > Checkout settings.

Multiple step or single page checkout
Depending on your type of business clientele, you can choose to optimize your checkout flow to use the multiple step or
single page checkout mode. The single page checkout will present a shorter number of steps toward checkout completion
by displaying all form elements at once. The customer sees the entire flow upfront and needs only click a single button to
complete checkout in a hurry.

In contrast, the multiple step checkout will gradually present related form elements a page at a time slowly leading the
customer to the last payment step. The customer feels relief taking his time to enter every information meticulously and
feels the information entered is validated along the way.

Single page checkout is usually recommended for businesses whose customers are tech savvy and generally purchase a
few quick items. However, if your customers require more hand guiding, your checkout form has a lot of custom fields or
you perform a lot of upselling of complex products, you will likely benefit from multiple step checkout.

Choosing the right approach can help increase your conversion rate. Do not simply assume a shorter form or quicker
checkout will necessarily mean higher conversion rate. Many studies (http://www.proimpact7.com/ecommerce-blog/one-
page-checkout-5-reasons-why-not/) have shown conflicting results where single page checkout can increase or even
decrease conversion rate. For example, Amazon.com uses the multiple step approach whereas Gap.com chooses to use
the single page checkout based on their own internal measurement. With Revindex Storefront, you can perform your own
internal test to see which approach works best for your type of business.

You must first enable the Checkout feature under Configuration > General to access this functionality. Once enabled, you can

configure your Storefront to show a multiple step or single page checkout mode under the Configuration > Checkout menu.

http://www.proimpact7.com/ecommerce-blog/one-page-checkout-5-reasons-why-not/

Checkout Availability
You must first enable the Checkout feature under Configuration > General to access this functionality. The checkout
availability rule determines if checkout is permitted based on conditions such as region, amount, quantity, etc.

 The checkout availability rule can also use XSL transform to determine whether the checkout should be allowed for
complex scenarios. The expected output should return "true" to indicate the checkout is allowed to proceed under the input
conditions, otherwise "false" if disallowed. The Storefront comes with several pre-defined rules that you can simply modify
the values without needing to know XSL. To learn more about XSL, please see the XSL Transform section.

Actions
You can automatically grant or revoke security roles to customer on checkout, send email, increment/decrement inventory,
update data or make a Web request to an external service. This feature is useful if you need to allow access to certain
pages on your Web site after the customer paid or you have custom logic that needs to run.

You must first enable the Checkout feature under Configuration > General. Once enabled, you can configure your action
rules under Configuration > Checkout menu.

You can only grant security roles that are allowed under the Configuration > Security menu settings. This security feature
prevents staff operators from creating product action rules to grant themselves higher level roles (e.g. “Administrators”
role).

The Place order action rule can also use XSL transform to determine what complex action rules to run. The Storefront
comes with several pre-defined rules that you can simply modify the values without needing to know XSL. To learn more
about XSL, please see the XSL Transform section.

How to assign security role on checkout
To assign one or more security roles (e.g. "Role1") during checkout, you must first authorize the role under the
Configuration > Security menu. You can allow a single role or all the roles belonging to a Role Group. Role Groups in
DotNetNuke are simply logical grouping and can be configured under Admin > Security Roles page. This security feature
prevents employees from creating product action rules to grant themselves higher level roles (e.g. “Administrators” role).

You must first enable the Checkout feature under Configuration > General to enable this functionality. To assign the role
for every checkout, you need to create an action rule under Configuration > Checkout menu. Under the Action tab, make
sure the Run action on checkout checkbox is selected. For the Place order action rule, select Basic. Click on Add new
and select Grant role and choose the role to assign. Click OK and the Save. You can assign multiple roles by repeating
the Add new action step.

To assign the role only when a specific product is purchased during checkout, you need to create an action rule under
Catalog > Products menu for the desired Product variant. Under the Action tab, for the Place order action rule, select
Basic. Click on Add new and select Grant role and choose the role to assign. Click OK and the Save. You can assign
multiple roles by repeating the Add new action step.

How to change payment acceptance mark
The payment acceptance mark helps visually indicate to your customers the different form of payment methods that are
accepted during checkout such as Amex, MasterCard or Amex. It can be changed in the same way as any static text
through the site's Admin > Languages page. Click on edit for the site and language of your choice.

Drill down the tree node, where <_default> is the standard templates or your portal number if you have created custom
display templates. <StandardX> is which ever template version you're currently using.

Local Resources
 DesktopModules
 Revindex.Dnn.RevindexStorefront
 Portals
 <_default>
 Display
 Checkout
 <StandardX>
 App_LocalResources
 Display.ascx

Look for the resource names and change the text (or HTML) to how you want it to be shown. Save and your checkout will
start using the new localized acceptance mark.

CashPaymentMethodListItem.Text

CheckPaymentMethodListItem.Text

CreditCardPaymentMethodListItem.Text

MoneyOrderPaymentMethodListItem.Text

PayFastPaymentMethodListItem.Text

PayPalPaymentMethodListItem.Text

WireTransferPaymentMethodListItem.Text

How to hide unwanted country
If there are countries your business doesn't sell to, you can easily disable the unwanted countries under Configuration >
General settings.

For older Storefront prior to v9.0, you can use Javascript to hide the available countries from the dropdown list. Simply,
create a custom display template for the Checkout module control.

For example, you can put this Javascript right below your ASP panel tag to remove all countries except U.S and Canada:

Make sure there is a space between the select[xxx] option[aaa]option[bbb] and no space between the
option[aaa]option[bbb]. The correct spacing is important here.

<asp:Panel ID="BillingAndShippingPanel" runat="server">
<script type="text/javascript">
function pageLoad(sender, args)
{
 jQuery("select[id$='BillingCountryDropDownList'] option[value!='US']option[value!='CA']").remove();
 jQuery("select[id$='ShippingCountryDropDownList'] option[value!='US']option[value!='CA']").remove();
}
</script>

1
2
3
4
5
6
7
8

How to set default country
Revindex Storefront will default to the user profile's country if available. Starting with Storefront 9.0 and above, you can easily

configure the default country under Configuration > General settings. If no default country is set, it will use the default
country set under the DNN Profile properties. It will also default to the state/region if the user has state/region saved in his
DNN profile. Otherwise, the state/region is listed alphabetically.

For older Storefront, you can follow the steps below to configure the default DNN profile country.

For DNN 7.3 and below, to set the default country, go to your Admin > User Accounts page and click on Manage Profile
Properties and select Country. For example, set the Default Value = "US" for United States without the quotes.

For DNN 7.4 and higher, to set the default country, you must first obtain the EntryID number from the database by
performing a SQL query. You can issue the query from the Host > SQL page as superuser.

SELECT EntryID, [Text] FROM Lists WHERE ListName = 'Country' ORDER BY [Text]

Take note of the EntryID number for your desired country. Go to your Admin > Site Settings page and look under Profile
Settings and select Country. For example, set the Default Value to "221" for United States without the quotes.

How to include registration form in checkout
When anonymous checkout is enabled, by default, the Storefront shows a "Create new account" and "Login to existing
account" link on the checkout page. If the user clicks on the "Create new account" link, he will be redirected to the default
site registration page. DNN allows you to customize the registration form and you can even install a 3rd party registration
module.

If you prefer to include a simplified registration form directly on the same checkout page, you can do so using a custom
display template for the Checkout module. Please see Display Templates
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/display-templates/rvdwkpvm/section) for more
information. Make sure you enable server-side code edit under Configuration > Security settings first.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/display-templates/rvdwkpvm/section

Near the top of the code, you want to hide the existing buttons so a simple way is to add a style="display:none" attribute.

Then you want to paste the following code right underneath it. This will add the email and password textboxes as well as a
new "Register" button with some C# code to create and login the user.

Once the form is working, you can move the "Login to existing account" button so it shows up next to your new "Register"
button. This is only an example. You are certainly welcome to add more fields to capture more information or change how it
works. Make sure you test and handle any potential human errors like invalid email, etc. The minimal information normally
needed to create a new user account is the email address (the password can be set by you or provided by the customer).

<div class="rvdsfCheckoutAccountActions" style="display:none">
 <asp:HyperLink ID="AccountRegistrationHyperLink" runat="server" resourcekey="AccountRegistrationHyperLink"
CssClass="dnnPrimaryAction rvdRegisterAction" />
 <asp:HyperLink ID="AccountLoginHyperLink" runat="server" resourcekey="AccountLoginHyperLink"
CssClass="dnnPrimaryAction rvdLoginAction" />
 </div>

 <div class="dnnForm">
 <fieldset>
 <div class="dnnFormItem">
 <dnn1:LabelControl ID="EmailLabelControl" runat="server" Text="Email:"/>
 <asp:RequiredFieldValidator runat="server" ControlToValidate="EmailTextBox" Display="Dynamic"
CssClass="dnnFormMessage dnnFormError" Text="Email is required." ValidationGroup="Registration">
</asp:RequiredFieldValidator>
 <asp:TextBox ID="EmailTextBox" runat="server" ValidationGroup="Registration"/>
 </div>
 <div class="dnnFormItem">
 <dnn1:LabelControl ID="PasswordLabelControl" runat="server" Text="Password:"/>
 <asp:RequiredFieldValidator runat="server" ControlToValidate="PasswordTextBox" Display="Dynamic"
CssClass="dnnFormMessage dnnFormError" Text="Password is required." ValidationGroup="Registration">
</asp:RequiredFieldValidator>
 <asp:TextBox ID="PasswordTextBox" runat="server" ValidationGroup="Registration" TextMode="Password" />
 </div>
 <ul class="dnnActions">
 <asp:LinkButton ID="RegisterLinkButton" Text="Register" runat="server" OnClick="RegisterLinkButton_Click"
ValidationGroup="Registration" CssClass="dnnPrimaryAction"/>

 <script runat="server">
 protected void RegisterLinkButton_Click(object sender, EventArgs e)
 {
 var newUser = new DotNetNuke.Entities.Users.UserInfo();
 newUser.Profile.InitialiseProfile(this.PortalId);
 newUser.PortalID = this.PortalId;
 newUser.Email = EmailTextBox.Text;
 newUser.Username = EmailTextBox.Text;
 newUser.IsSuperUser = false;
 newUser.Membership.Approved = true;
 newUser.Membership.CreatedDate = DateTime.Now;
 newUser.Membership.Password = PasswordTextBox.Text;
 newUser.Membership.UpdatePassword = false;

 var status = DotNetNuke.Entities.Users.UserController.CreateUser(ref newUser);

 if (status != DotNetNuke.Security.Membership.UserCreateStatus.Success)
 MessagePlaceHolder.Controls.Add(DotNetNuke.UI.Skins.Skin.GetModuleMessageControl(null, "Sorry, we
cannot create this user. Please make sure your email is unique and your password is at least 6 characters
long.", DotNetNuke.UI.Skins.Controls.ModuleMessage.ModuleMessageType.RedError));
 else
 {
 var x = DotNetNuke.Entities.Users.UserController.ValidateUser(newUser, this.PortalId, true);
 DotNetNuke.Entities.Users.UserController.UserLogin(this.PortalId, newUser,
this.PortalSettings.PortalName, Request.UserHostAddress, true);
 Response.Redirect(Request.RawUrl, false);
 }
 }
 </script>
 </fieldset>
 </div>

1
2
3

4

5
6

1
2
3
4
5
6

7
8
9
10
11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39

40
41
42
43
44
45
46

How to create a single login & register page
To create a combined Login and Register page, simply follow these steps below. The following procedure may or may not work

depending on your version of DotNetNuke.

1. Login as Host and go to Admin > Site Settings and then under Advanced Settings followed by Host Settings, include the

"Users and Roles" and "Account Login" modules. These modules will now be available to be added to a page just like

other modules.

2. Create a new page called "Login" and hide it from the menu. Make the page viewable by Administrators (default) and

Unauthenticated Users.

3. Add the "Account Login" module and the "Users and Roles" module to the page. The DNN Users and Roles module

comes with a bunch of module controls and you can remove the ones you don't need and keep only the one that looks like

a registration form. Arrange them so they look nice.

4. Go to Admin > Site Settings and then under Advanced Settings and Page Management and set the Login selection to

your newly created login page.

How numbers are calculated and rounded
Internally, the Storefront uses 4 decimal precision places to store and calculate numeric values. Using 4 decimal places
allows greater precision to handle extremely price sensitive commodities such as jewelry, industrial chemicals,
pharmaceutical drugs, manufacturing goods, etc. where amounts may need to be multiplied by fractional unit cost (e.g.
$1.0381 per gram).

In addition, the higher level of precision allows for more accurate calculation of the total amount than typical 2 decimal
places calculations. Suppose your business sells ceramic tiles at $10.00 each and you're giving a 1/3 discount for each
item ordered in your store. The Storefront will calculate a fractional discount of $3.3333 per unit. If the customer orders 100
ceramic tiles, it will yield a total discount of $333.33. If the system had used a 2 decimal place precision, it would have
calculated a less accurate total discount of $333 and the customer is overcharged by $0.33.

Even though using 4 decimal places internally is important for accurate calculation, it is customary for businesses to round
the final amount to display 2 decimal places to accommodate the country's monetary system. Internally the values are
always calculated with 4 decimal places without rounding, but the values shown on screen are rounded to 2 decimal
places by the Storefront before being displayed. So even if you sell a product that has a fractional amount and the
customer places 1000 items in the cart, the total sum will always be highly accurate. In contrast, where it would be wrong
is if the Storefront had rounded it early during the discount calculation and later perform the sum of the total amount
towards the end of the mathematical flow, the sway would be amplified by the number of items in the cart.

The rounding strategy follows your system's rounding algorithm and commonly follows the "Banker's rounding" algorithm:

any fractional number less than 5 will round down to the previous nearest number

any fractional number greater than 5 will round up to the next nearest number

the fractional 5 itself will round up or down to the nearest even number (e.g. 1.745 will round down to 1.74 whereas
1.755 will round up to 1.76).

The Banker's rounding algorithm is considered more accurate and fair because it doesn't favor any side, and is preferred
by bankers and accountants. In particular, the fractional 5 is evenly rounded up or down by perfectly half case.

How to require terms & agreement
If you want your customers to agree to your terms and conditions before they complete checkout, you can easily add a
checkbox to your checkout page by following the steps below:

1. You must first enable the Checkout feature under Configuration > General.

2. From your Storefront admin's Configuration > Checkout menu, select the Custom field tab.

3. Choose "Basic" for the dynamic form dropdown.

4. Click Add new.

5. In the Field type, select "CheckBox".

6. Give the ID a name like "AgreementCheckBox" without spaces.

7. Give the Label a title like "I agree to the terms and conditions:".

8. Check the Required checkbox.

9. In the Validator text, enter an error text like "You must agree to proceed."

10. Click OK.

11. Click Save.

If you want complete customization over the look and feel of the checkbox and text, you can use the "Custom code"
instead of the "Basic". From there, you can select the "Require agreement" template under the New from Template menu.
This will allow you to edit the full ASP.NET/HTML of how you would like it to appear.

Confirmation
The Confirmation module control displays the confirmation after a successful checkout. This module should reside on a
SSL secured page visible to all users. To change the look-and-feel using a custom display template, set the Display
template value from the Configuration > Confirmation menu.

Wish List
A wish list allows customers to bookmark products that they are interested to buy in a future time. For example, customers
can create a “Christmas” wish list to keep track of products that they would consider buying at the year end.
A gift registry is simply a more advanced form of wish list and allows you to input an event date, location, etc. For example,
a wedding registry would usually include the names of the bride and groom, wedding date and location. For the purpose of
this documentation, we shall simply refer to both of them simply as "wish list".

The Wish List module control allows customers to search other people's public wish list. This module control is usually
placed on a page for all users to view.

For example, a customer may search for the baby registry to purchase the gifts for his friend. During checkout, the page
will automatically be populated with the correct shipping address and the purchase will be associated to the wish list.

Please see Manage Wish List (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/manage-wish-
list/rvdwkpvm/section) for more information on managing a wish list.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/manage-wish-list/rvdwkpvm/section

Quick Order
The Quick Order module allows customers to quickly order multiple products by name or SKU. If you sell many products
and you have repeat customers that places large orders (e.g. a wholesaler that sells automobile parts or hardware tools)
will benefit from being able to place the order for many products in bulk. You can search for products by name or SKU and

quickly edit an order to checkout.

Manage Address
The Manage Address module control allows customers to save their frequently used addresses for quick fill in other
forms. This module should reside on a SSL secured page visible to registered users only (e.g. typically under some “My
Account” page).

Manage Product Download
The Manage Product Download module control allows customers to download virtual products they purchased (e.g.
software, e-book, music, etc.). This module should reside on a SSL secured page visible to registered users only (e.g.
typically under some “My Account” page).

As a security measure, the download link for a product will only appear once the order has been marked as “Paid” or
"Completed".

Please see Downloadable Products (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/downloadable-products/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/downloadable-products/rvdwkpvm/section

Manage Order
The Manage Order module control allows customers to view orders they placed and the status of the order. This module
should reside on a SSL secured page visible to registered users only (e.g. typically under some “My Account” page).

Manage Payment
The Manage Payment module control allows customers to manage their billing information needed for recurring orders.
This module should reside on a SSL secured page visible to registered users only (e.g. typically under some “My Account”
page).

Manage Recurring Order
The Manage Recurring Order module control allows customers to manage recurring orders they placed. This module
should reside on a SSL secured page visible to registered users only (e.g. typically under some “My Account” page).

Please see Subscription Products (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/subscription-products/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/subscription-products/rvdwkpvm/section

Manage Rewards Points
The Manage Rewards Point module control allows customers to view their current rewards points balance. This module
should reside on a SSL secured page visible to registered users only (e.g. typically under some “My Account” page).

Please see Rewards points (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/rewards-
points/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/rewards-points/rvdwkpvm/section

Manage Rights
The Manage Right module control allows customers to view the access rights codes associated with their purchased
products (e.g. software, e-book, music, etc.). This module should reside on a SSL secured page visible to registered users
only (e.g. typically under some “My Account” page).

As a security measure, the access rights are only issued once the order has been marked as “Paid” or "Completed".

Please see Rights (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-
rights/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-rights/rvdwkpvm/section

Manage Vouchers
The Manage Voucher module control allows customers to view their voucher codes and the remaining balance. This
module should reside on a SSL secured page visible to registered users only (e.g. typically under some “My Account”
page).

As a security measure, the vouchers are only issued once the order has been marked as “Paid” or "Completed".

Please see Vouchers (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-
vouchers/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/catalog-vouchers/rvdwkpvm/section

Manage Wish List
The Manage Wish List module control allows customers to view and manage products added to their wish list or gift
registry.

A wish list allows customers to bookmark products that they are interested to buy in a future time. For example, customers
can create a “Christmas” wish list to keep track of products that they would consider buying at the year end. A gift registry
is simply a more advanced form of wish list and allows you to input an event date, location, etc. For example, a wedding
registry would usually include the names of the bride and groom, wedding date and location. For the purpose of this
documentation, we shall simply refer to both of them simply as "wish list".

You can create as many wish lists you like. A wish list can optionally be published for other users to see. This allows
friends and family to search your wish list to purchase the gifts on your behalf (e.g. purchase a gift for your birthday or your
upcoming wedding). Please see Wish List (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/wish-list/rvdwkpvm/section) for more information. You can also email a special link to your selected friends and
family that will bring them directly to your wish list without sharing it with everyone.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/wish-list/rvdwkpvm/section

Multi-seller marketplace
Revindex Storefront can help your business earn more money with little effort. You can turn your amazing store into a full-
fledge marketplace that consists of your own products you already sell and new products from 3rd party sellers. For
example, you can sell products that will drop ship directly from other vendors. There are literally hundreds of thousands of
products from thousands of drop shippers ready to post their products on your site for sale.

Customers are happy to shop at your site with your newly extended catalog and will be able to purchase any combination
of your products in a single checkout. Your shop will process the payment and you will in turn distribute the money to your
sellers after deducting any commission you take.

Your sellers are happy to have sold their products quickly through your site. They will have access to self-manage their
own warehouses, products, inventory and prices on your site so you don't have to do the grunt work. They will receive the
same email confirmations as you do when a checkout completes and can view the order information through the same
familiar Storefront interface that you use except they can only view information pertinent to them and not information from
other sellers or from your side of business. Just as you would optimize your business operations, your sellers can define
their own packing, shipping, handling and fulfillment methods to optimize their micro-business operation within your store.
They will also be able to define their own tax methods so that their products sold on your site respect their tax jurisdiction
since these products originate from their business location or their warehouses (e.g. you operate a store in California, but
your seller ships products out from Ohio. You are legally required to collect tax based on Ohio tax rate since the sale of the
product falls under the Ohio tax jurisdiction, which is an origin-based tax collection state).

Sellers
A seller (sometimes called a "vendor") is a business entity that will be placing their products for sale on your site. A seller
account can be managed by any number of designated users in your system. Given that you can have an unlimited
number of sellers and each one of them can create and manage products on your site, you need to be conscious of
security to ensure they only have access to information pertinent to them and not be able to view data from other sellers or
from your general business.

You must first enable the Marketplace feature under Configuration > General settings.

You also need to decide on a security role under Configuration > Security settings (e.g. create a security role called
"Sellers" that will be used to regroup all users who are seller representatives). This role should only be granted to users
who will be managing their respective seller accounts and will help you to secure access to important seller information
easily later on.

You can add new seller accounts to your system from the People > Sellers menu. After adding a new seller, you need to
associate one or more registered users who will own and manage this seller account from the People > Customers
menu.

Administration
Each seller is able to self-manage her own warehouses, products, inventory, prices, packing, shipping, handling, fulfillment
and tax methods using the same familiar Storefront administrative panel as you use today.

Create a new page (e.g. "My sellers") and grant the view access to the seller role that you defined earlier. Under
Configuration > Installer, add a new Administration module to the newly created page. Set the new module's settings
for the Operation mode to "Seller".

You also want to grant view and edit access to all or some of the Storefront functionality for users who have your sellers
role. For security purposes, sellers can only view data that is pertinent to them and not data from other sellers or from your
general business.

When one of the registered users belonging to a seller account logs into that page, they will be presented with a limited
view of the Storefront administrative panel allowing them to access information pertinent to their seller account.

Order splitting
It's important to understand how Revindex Storefront treats orders when several products from different sellers or
warehouse origins are being purchased together in a single cart transaction.

Many shipping and tax providers (Revindex Storefront is Avalara tax certified) expect a single origin address for a sales
order used for accurate shipping and tax calculation. However, in reality, every seller and warehouse has a different
business address where they will ship out the products from. Therefore, products from different sellers or warehouse
purchased together in a single cart transaction are automatically split into separate orders internally for each seller and
warehouse. From a usability standpoint, the customer will not notice any difference during checkout and will only make a
single payment for all the products in his shopping cart resulting in less cart abandonment.

Aside from the obvious shipping and tax accuracy, the seller benefits from order splitting because the split order now
consists only of her products that she needs to focus her attention on for fulfillment. It also provides a layer of privacy so
that a seller cannot know what other products are purchased from other sellers on your site and prevents them from
marketing to the customer unethically. Any cancellation from one seller will not affect the rest of the orders from other
sellers.

Even though the orders are split, the payments are still applied to only a single order since the customer made one lump
sum payment for all the products in his cart. Among the split orders, one of the orders is automatically chosen to be a
parent order with the remaining orders becoming known as the child orders. Collectively, they belong to the group of
orders. Any payment collected is to be made to the parent order. The sum of payments is always considered to apply to
the group total amount. In other words, payment made to the parent order is also used to pay for the child orders.

You can view the parent or child orders by looking at the Related tab. It will display all the orders that are related to this
order as a group.

Text and languages
There are two kinds of text (static and content localized text) utilized by DNN and the Storefront. Static localized text is
available as part of the software and is usually found in form labels such as "First name:" or title headings. Content
localized text is text created by the user such as product name and description. For example, "brown shoes" is a content
text because you created a product with that name.

International languages
Revindex Storefront supports all languages used by both static and content localization for customer facing pages. For
example, your Web site may display products in the default English (United States) language as well as in French
(France). When a customer visits your store, the Storefront will automatically detect the customer’s preferred culture and
displays the appropriate text and number format in their culture. If the localized content is not available, the Storefront will
automatically try the fallback language and finally the system language (e.g. English is displayed if French is not enabled).

Static Localization and Language Packs
Static localization is for non-data driven text such as a button label on a page that doesn’t change (e.g. the button “Buy
now” is static localized text).

Revindex provides translated text in the form of languages packs for various languages (e.g. Spanish, French, Italian,
German, etc.). To install a language pack, log in as Host and add the language under Admin > Languages page. Once
the language has been added, you can install the language pack under Host > Extensions page by following the
installation wizard.

If the language pack is not available, you can manually localize static text from the Admin > Languages page. Edit the
static resources for the Site next to the desired language. Expand the nodes under:

Local Resources
 DesktopModules
 Revindex.Dnn.RevindexStorefront
 App_LocalResources

and under:

Local Resources
 DesktopModules
 Revindex.Dnn.RevindexStorefront
 WebUserControls

Repeat for each of the templates where <_default> is the standard templates or your portal number if you have created
custom display templates. <ModuleControl> is one of the module controls and <StandardX> is which ever template
name you're currently using.

Local Resources
 DesktopModules
 Revindex.Dnn.RevindexStorefront
 Portals
 <_default>
 Display
 <ModuleControl>
 <StandardX>
 App_LocalResources
 Display.ascx

Check out the video tutorial below on how to change static localized text from the DNN Language editor.

You can also quickly edit the resource files (*.resx) in your site folder using Visual Studio or Notepad if you're
comfortable editing an XML file.

How to format the currency symbol
Currency symbol is determined by your Web site's selected language (also better known as culture) and the matching
currency configured in your Storefront's Configuration > Currencies settings.

For example, if your site displays in both in English (U.S) and French (France) languages, and you have configured your
Storefront's currency settings to match both languages, the currency symbol displayed will be "$" and "€" respectively. If,
however, you only enabled English (U.S) in your Storefront's currency settings, the system will automatically fallback to the
primary currency.

The desired currency format is determined by your Price display mode under Configuration > General settings. If your
Price display mode is set to "Show price", the system expects that you will only display prices without taxes. In certain
countries such as in Europe, you are required by law to display the prices with taxes included. In this case, you must set
your Price display mode to "Show price tax inclusive" to notify the system to automatically calculate the applicable taxes
immediately.

To control the currency format, you can do so through the static localization from the site Admin > Languages and edit the
static localization for your language. Then drill down to the node and look for the Format.Currency.Text for "Show price"
mode and Format.CurrencyTaxInclusive.Text values for "Show price tax inclusive" mode.

Local Resources
 DesktopModules
 Revindex.Dnn.RevindexStorefront
 App_LocalResources
 SharedResources

The {0} token is replaced with the currency code, the {1:c} token is replaced with the amount with currency symbol and the
{2:c} token is replaced with the amount tax included with currency symbol. Depending on how you configured your
Configuration > General price display settings, it will use one of the two formats.

For example, the following currency format "{0} {1:c}" will display "USD $8.88". If you want to omit the "USD" currency
code, simply change the format to "{1:c}" and it will print a shorter "$8.88".

Similarly, the currency format for tax included prices of "{0} {1:c} ({2:c} tax incl)" will display "USD $8.88 ($9.20 tax incl)".
You can shorten the format to "{2:c}" if you simply want to print "$9.20".

You can find more information about string formatting here:

http://msdn.microsoft.com/en-us/library/dwhawy9k.aspx (http://msdn.microsoft.com/en-us/library/dwhawy9k.aspx)

http://msdn.microsoft.com/en-us/library/dwhawy9k.aspx

How to create your own language pack
You can also create entire install-able language pack for a translation that we don't currently support. The easiest way is to
use the free DotNetNuke Translator (http://dnntranslator.codeplex.com) application. It allows you create and edit resource
keys quickly from your desktop.

Alternatively, you can also create the language pack manually by following the steps below. Suppose you have a language
(e.g. ru-RU for Russian) that we don't have the language pack for it.

1. Download any of the localized language package extract it to a temp folder. Preferably, it should match the version
of the software you're installing. In this example, we'll use the French language
pack Revindex.Dnn.RevindexStorefront.LanguagePack.fr-FR.04.01.00.zip and extract it to the following file
path:

C:\Temp\Revindex.Dnn.RevindexStorefront.LanguagePack.fr-FR.04.01.00

2. Open the .dnn text file content and rename all occurences of the original language code to your desired language
code. For example, open C:\Temp\Revindex.Dnn.RevindexStorefront.LanguagePack.fr-
FR.04.01.00\RevindexStorefront.LanguagePack.fr-FR.dnn with notepad and do a Find/Replace all from "fr-FR" to
"ru-RU". Save it.

3. Use the following Powershell command to bulk replace all filenames from French to Russian. Change the command
to match your source and destination language codes. Rename the file path, source and destination language
codes if it's different from the example.

get-childitem -recurse -include *.resx,*.dnn -path "C:\\Temp\\Revindex.Dnn.RevindexStorefront.LanguagePack.fr-
FR.04.01.00" | foreach-object {rename-item -path $_.FullName -newname ($_.Name.Replace("fr-FR", "ru-RU"))}

4. Open each resource file (.resx) using notepad or preferably using Visual Studio to translate the text to your desired
language. You may decide to omit translating older display template resource files if you know you're not using
them. If you don't want to translate the text from a text editor now, you may do so later on from DotNetNuke Admin
> Languages page after installing your new language pack.

5. Zip up the folder so that it looks like the original package. Install it on your DNN and you will now have a new
translated language for the Storefront.

http://dnntranslator.codeplex.com/

How to format page title
By default, the Storefront will append the product name to your page title (e.g. "MySite > Product"). To change the page
title format, you can change adjust the static localization from the site Admin > Languages and edit the static localization for

your language. Then drill down to the node and look for the Format.PageTitle.Text values.

Local Resources
 DesktopModules
 Revindex.Dnn.RevindexStorefront
 App_LocalResources
 SharedResources

The {0} token is replaced with the Web site name as defined in your DotNetNuke settings, the {1} token is replaced with
the product name.

Content Localization
Content localization is for data driven text such as the product name or product description (e.g. “DVD Player” in French is
shown as “Lecture DVD”). Revindex Storefront supports content localization for virtually any customer visible data driven
text including category names, product attributes, image gallery, alternate text, SEO keywords, etc..

Starting DNN 5.5 and above supports page content localization. You must first enable content localization under Host >
Host Settings page under the Other Settings tab.

The rest of the language management is performed under the usual Admin > Languages page. From there, you can add

your new language(s).

Adding a new language will allow you to select the page’s language (or country flag) to set the edit mode in the desired

language. As you edit any text fields, it will automatically save the text in that selected language.

Internally, DNN implements content localization by making copies of the page along with copies of all the module controls
(also known as “detaching” a module) on the page. In practice, it allows the editor to make text changes for different
languages since you now have a duplicate page for every language enabled. Since Revindex Storefront handles its own
internal content localization, there is no need to duplicate the module controls. Therefore, you need to configure your page
settings to keep all the Revindex Storefront modules in “attached” mode (i.e. not “detached”). From that same page
settings, you can now localize the text for each of the enabled languages.

How to localize XSL email template
Customer can receive email receipts in their preferred language and currency in the same way they would expect when
shopping at your Web site. Email templates can be localized in the same way as any text fields.

To localize the email templates, simply select the desired country flag from your page and translate the email templates in
the Configuration > Communication menu. If you don't provide a translation, the customer will receive the fallback email
template.

To format numbers in your culture, you may want to modify how numbers are being grouped and how decimals are being
displayed (e.g. in French, a decimal point uses a comma). The decimal-format instruction tells the system how to handle
number formatting. You simply need to place this near the top of the template once.

{xsl:decimal-format decimal-separator="." grouping-separator="," /}

Design and Styling
When it comes to designing and creativity, you have full HTML control to completely modify the look-and-feel of all the
public module controls (e.g. product detail, list, cart, checkout, etc.). You can even go as far as modify and in certain cases
rearrange ASP.NET controls and their properties to affect the control behaviors and layouts.

Revindex also sells amazing looking DNN skins that are optimized for the Storefront. You may prefer to purchase a ready-
made skin to get a nice look and feel of the site for a quick and cost-effective implementation.

Display Templates
All the Revindex Storefront module controls use the native DNN container skins so you have a consistent look across your
Web site that you can modify from your normal Admin > Skins page. The user interface design and CSS styles follow
the DNN UX Guide (http://uxguide.dotnetnuke.com/) best practices closely so that it can be modified easily in a consistent
manner across your site. In addition, the content and internal look-and-feel of public facing module controls can be
customized per portal.

You must first enable the Display templates feature under Configuration > General. Once enabled, you can create
display templates from the Configuration > Display templates menu. For example, you can customize the Product
Detail module to change the layout, color, font, CSS style, add text and images.

Start by choosing the module you wish to customize and click Add new. Give it a meaningful name (e.g. “FeaturedList1”).
You now need to choose a Base display template as a starting point (e.g. "Standard5". The higher the version number,
the newer the base template with more features.). The base template you selected provides the programming logic for
your new template. Make the HTML, ASP.NET or Javascript changes needed to your new template. For security to
prevent unauthorized access to data, you cannot modify any server-side code unless it is explicitly allowed by your Host
user under Configuration > Security settings. Server-side code is usually any code that is in between <% %> tags. Once
saved, your new custom template is now ready to be used.

For example, if you created a new custom template for the Product Detail module, you can change the default template
portal-wide under Display template in the Configuration > Product detail menu. Please note you must first enable the
Product detail feature under Configuration > General to access this functionality. You could also change the default
template module-wide under the module’s Settings. Alternatively, you can configure your individual product to use this
new custom template in place of any of the portal or module default template.

As the software evolves, new features introduced in base display templates carry a different version number (e.g.
“Standard1”, “Standard2”, “Standard3”) providing an upgrade path for users who are not ready to upgrade their custom
template. Base display templates older than 1 or 2 years become obsolete and will be removed from future versions

http://uxguide.dotnetnuke.com/

eventually. Custom display templates based on these removed templates will no longer function. You are, therefore,
encouraged to continuously upgrade any custom templates to use the latest base display templates as they become
available to avoid disruption to your site.

Always start by making small incremental changes, save and view your changes you just made. Once you get comfortable,
go back, repeat and make more changes. It’s also a good practice to write HTML comments next to your line edits so you
remember what changed.

If you want syntax highlighting, you may prefer to copy the code into a local file and edit it using the free Microsoft Visual
Web Developer Express or Visual Studio.

<!-- This is a comment ignored by the browser... Changed layout to show a darker color -->
<div style="background-color:darkred">

1
2

Removing unwanted elements
You can safely delete any unwanted HTML elements (http://www.w3schools.com/html/html_elements.asp) but never delete
any server-side ASP.NET elements (elements that begin with "asp:" prefix) as these server controls are needed by the
application to run.

For example, you can delete the because this is just a plain regular HTML element, however,
you should not delete <asp:HyperLink runat="server" NavigateUrl="/somewhere" />.

Instead, you should use CSS to hide the unwanted ASP.NET elements. For example, you can add the style="display:none"
or style="visibility:hidden" to the ASP.NET element.

<asp:Label ID="SavingsValueLabel" runat="server" style="display:none" />
<div style="visibility:hidden" />

1
2
3

http://www.w3schools.com/html/html_elements.asp

How to upgrade display templates
As time passes with new each new release of the software, older base display templates (e.g. "Standard1", "Standard2",
etc.) may be removed from newer installation. Therefore, any custom display templates referencing the older base display
templates may no longer work. You will receive an error message if you try to use them.

The Storefront comes with a basic online code merge editor to help compare line differences. You may want to employ a 3rd

party merge editor like WinMerge (http://winmerge.org/) if you're more comfortable merging from a desktop application instead

of performing the merge online.

There are several ways you can upgrade your display template (merge changes into a new template or merge changes to an

existing template). We recommend to merge changes to a new display template as it is the safest approach and allows you to

incrementally test your new template before overwriting your old display template.

Merge changes to a new display template

1. Navigate to the Configuration > Display templates menu.

2. Create new custom display template of the same module control type that you want to upgrade.

3. Give it a name (e.g. "CustomTemplate2") and make sure you select the latest base display template with the highest
suffix number (e.g. "Standard8").

4. In the Compare with drop down, choose your old custom display template that you want to upgrade from (e.g.
"CustomTemplate1"). The left textarea should now show your new display template and the right textarea should
show your old custom display template.

http://winmerge.org/

5. Look for your line changes and click on the left wiggly arrows to merge only the lines that you want to affect into the
new display template (right to left). Merging code requires careful attention to details. Failure to understand what
each line does may break the structure of the code. In this case, you're looking for code changes you made to the
old display template and your goal is to replicate those changes into the new display template.

6. Save your new display template.

7. Go to your configuration settings to set the respective module control to use your new custom display template.

8. Once everything is tested. You can now delete the old custom display template.

Merge changes to an existing display template

1. Navigate to the Configuration > Display templates menu.

2. Select your custom display template (e.g. "CustomTemplate1") that you want to upgrade.

3. In the Compare with drop down, choose the newest display template with the highest suffix number (e.g.
"Standard8"). The left textarea should now show your custom display template and the right textarea should show
the new base display template.

4. Look for your line changes and click on the left wiggly arrows to merge the lines from the base display template into
your current display template (right to left). Merging code requires careful attention to details. Failure to understand
what each line does may break the structure of the code. In this case, your goal is to preserve the code changes
you made in the custom display template and merge in the new code structure from the new base display template.

5. Save your custom display template and perform test.

How to style buttons
Running the latest Revindex Storefront, styling buttons is as easy as styling any element on the page. The best approach is to

locate the relevant CSS class and override the styles (http://www.revindex.com/Resources/Knowledge-Base/Revindex-

Storefront/how-to-override-css-styles/rvdwkpvm/section) from your portal stylesheet under Admin > Site settings page.

By default, the buttons automatically apply the same styles as the rest of the buttons on your site achieving a consistent
look-and-feel across all your pages. Revindex Storefront makes it easy for you to override the look-and-feel of a single
button or all the same buttons (e.g. "Add to cart" buttons). The easiest way is to use the developer tool on your browser
(typically by pressing F12 or CTRL+SHIFT+I on your browser). The developer tool allows you to select the button and
inspect the CSS class name being applied.

As an example, let's try to style the "Add to cart" button.

1. Browse to your product list page.

2. From your IE or Chrome browser, press F12 to launch the developer tool.

3. With the selector tool (usually an arrow or magnifying glass icon), click on the "Add to cart" button. The developer tool will

pinpoint the corresponding HTML that is responsible for rendering the button.

4. Note the CSS class responsible for the styling the button is called "dnnPrimaryAction rvdsfAddToCartAction".

5. Suppose we like to change the background color of the button to green and add an image icon next to the text. We can

override the default style of your skin from the stylesheet under Admin > Site settings page by pasting the following CSS

rule below. The URL of the icon should be relative to where you store your images. Depending on your skin being used,

you may need to adjust the margin and padding to align the text. This rule will change all the "Add to cart" buttons on your

site.

<a id="dnn_ctr427_ViewRevindexStorefrontProductDetail_ctl00_AddToCartLinkButton" title="Add to cart"
class="dnnPrimaryAction rvdsfAddToCartAction" href='javascript:WebForm_DoPostBackWithOptions(new
WebForm_PostBackOptions("dnn$ctr427$ViewRevindexStorefrontProductDetail$ctl00$AddToCartLinkButton", "", true,
"ProductDetailDisplayTemplateControl", "", false, true))'>Add to cart

a.dnnPrimaryAction.rvdsfAddToCartAction
{
 background-color: green;
 background-image: url(/Icons/Sigma/Add_16x16_Standard.png);
 background-position: 5px center;
 background-repeat: no-repeat;
 margin-left: 10px;
 padding-left: 25px;
 vertical-align: middle;
}

1
2

3

1
2
3
4
5
6
7
8
9
1
01
1

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-override-css-styles/rvdwkpvm/section

How to expand panel by default
The Storefront uses collapsible panels in many places to improve usability. The panels are typically created using standard
DNN or jQuery panels. To expand a panel by default, you can add the following Javascript.

1. Create a custom display template (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/display-templates/rvdwkpvm/section) for your desired module.

2. Find the section of code that controls the panels and take note of the ID in the h2 element.

<asp:Panel ID="EstimateShippingTaxPanel" runat="server" DefaultButton="EstimateShippingTaxLinkButton">
 <h2 id="EstimateShippingTaxFormSectionHead" class="dnnFormSectionHead">
 <asp:Label ID="EstimateShippingTaxSectionLabel" runat="server"
resourcekey="EstimateShippingTaxSectionLabel" /></h2>
 <fieldset>

3. Add the following Javascript to an area in the code that does not conflict or break the tag symmetry. Replace the
search key by the ID you copied earlier.

<script>
jQuery(document).ready(function ()
{
 if (document.cookie.indexOf("EstimateShippingTaxFormSectionHead") < 0)
 $("#EstimateShippingTaxFormSectionHead > a").click();
});
</script>

4. Save and make sure your module is now using this new custom display template.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/display-templates/rvdwkpvm/section

Models

CartModel

Member Type Description

TabID Integer Database object identifier for the page.

TabUrl String The absolute URL for the page.

CartSummaryViewModel

Member Type Description

Cart
CartModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-cartmodel/rvdwkpvm/section)

Checkout
CheckoutModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-

Storefront/design-models-checkoutmodel/rvdwkpvm/section)

SalesOrderSet
SalesOrderSetModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salesordersetmodel/rvdwkpvm/section)

ShowRewardsPoint Boolean

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-cartmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-checkoutmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salesordersetmodel/rvdwkpvm/section

CartViewModel

Member Type Description

Cart
CartModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-cartmodel/rvdwkpvm/section)

Checkout
CheckoutModel (http://www.revindex.com/Resources/Knowledge-

Base/Revindex-Storefront/design-models-checkoutmodel/rvdwkpvm/section)

DefaultCity String

DefaultCountryCode String

DefaultPostalCode String

DefaultSubdivisionCode String

RequireProfileSubdivision Boolean

SalesOrderSet
SalesOrderSetModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salesordersetmodel/rvdwkpvm/section)

Shopping
ShoppingModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
shoppingmodel/rvdwkpvm/section)

ShowCoupon Boolean

ShowCrosssellProduct Boolean

ShowEstimateShippingTax Boolean

ShowRewardsPoint Boolean

ValidationResults
List<ValidationResultModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-validationresultmodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-cartmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-checkoutmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salesordersetmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-shoppingmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-validationresultmodel/rvdwkpvm/section

CategoryModel

Member Type Description

CategoryID Integer Database object identifier.

DefaultThumbnailGallery

GalleryModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
gallerymodel/rvdwkpvm/section)

Default thumbnail gallery
associated to this
category.

Description String Category description.

DisplayOrder Integer
Sort display order from
smallest to largest
number.

Galleries

List<GalleryModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
gallerymodel/rvdwkpvm/section)>

Galleries associated to
this category.

MetaDescription String Meta description.

MetaKeywords String Meta keywords.

Name String Category name.

ParentCategoryID Integer?
For sub-category,
reference to a parent
object by its CategoryID.

ProductList

ProductListModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productlistmodel/rvdwkpvm/section)

Published Boolean
Enable display of the
category.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-gallerymodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-gallerymodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section

CategoryViewModel

Member Type Description

CategoryID Integer?
The currently
selected
category.

ProductList
ProductListModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-

Storefront/design-models-productlistmodel/rvdwkpvm/section)

Categories
List<CategoryModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-categorymodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-categorymodel/rvdwkpvm/section

CheckoutModel

Member Type Description

TabID Integer Database object identifier for the page.

TabUrl String The absolute URL for the page.

CodeType

Name Value Description

None 1

Data 2

AspNetMarkup 3

ConfirmationViewModel

Member Type Description

PrintUrl String

SalesOrderGUID GUID?

SalesOrderSet
SalesOrderSetModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-salesordersetmodel/rvdwkpvm/section)

Shopping
ShoppingModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
shoppingmodel/rvdwkpvm/section)

ShowRewardsPoint Boolean

StartupScript String
Used for injecting any
javascript like analytics
tracking code.

ValidationResults
List<ValidationResultModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-validationresultmodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salesordersetmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-shoppingmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-validationresultmodel/rvdwkpvm/section

CrosssellProductModel

Member Type Description

CrosssellProductID Integer
Database
object
identifier.

Description String

DisplayOrder Integer

OfferProduct
ProductModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-productmodel/rvdwkpvm/section)

The product
to offer.

OfferProductID Integer

ProductID Integer?

Title String

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productmodel/rvdwkpvm/section

CrosssellProductViewModel

Member Type Description

Cart
CartModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-cartmodel/rvdwkpvm/section)

Checkout
CheckoutModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-

Storefront/design-models-checkoutmodel/rvdwkpvm/section)

CrosssellProducts
List<CrosssellProductModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
crosssellproductmodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-cartmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-checkoutmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-crosssellproductmodel/rvdwkpvm/section

DistributorFilterModel

Member Type Description

DistributorIDs List<int>

DistributorModel

Member Type Description

Description String Short description.

DisplayOrder Integer
Sort display order from
smallest to largest
number.

DistributorID Integer
Database object
identifier.

MetaDescription String Meta description.

MetaKeywords String Meta keywords.

Name String Distributor name.

ProductList
ProductListModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productlistmodel/rvdwkpvm/section)

Published Boolean

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section

DistributorViewModel

Member Type Description

DistributorID Integer?
The currently
selected
distributor.

ProductList
ProductListModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-

Storefront/design-models-productlistmodel/rvdwkpvm/section)

Distributors
List<DistributorModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-distributormodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-distributormodel/rvdwkpvm/section

DynamicFormCodeModel

Member Type Description

DynamicForm
DynamicFormModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-dynamicformmodel/rvdwkpvm/section)

Formula String

Version String

Type
CodeType (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-codetype/rvdwkpvm/section)

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-dynamicformmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-codetype/rvdwkpvm/section

DynamicFormFieldModel

Member Type Description

ID String

DynamicFormModel

Member Type Description

Fields
List<DynamicFormFieldModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-dynamicformfieldmodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-dynamicformfieldmodel/rvdwkpvm/section

GalleryFormatType

Name Value Description

Detailed 1 SEO alternate text for the image.

Display 2 Gallery sort order from smallest to largest number.

Thumbnail 3 Detailed, Display, Thumbnail

GalleryModel

Member Type Description

AlternateText String
SEO alternate text for the
image.

DisplayOrder Integer
Gallery sort order from
smallest to largest number.

Format
GalleryFormatType (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
galleryformattype/rvdwkpvm/section)

Detailed, Display, Thumbnail

GalleryID Integer Database object identifier.

Height Integer

MediaType String

MediaUrl String
The absolute URL to the
image.

Width Integer

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-galleryformattype/rvdwkpvm/section

IntervalType

Name Value Description

Day 1

Month 3

Week 2

Year 4

InventoryUnitType

Name Value Description

Constant 1 Inventory is fixed for non-booking product.

Year 2 Inventory can be reserved yearly in the case of a booking product.

Month 3 Inventory can be reserved montly in the case of a booking product.

Week 4 Inventory can be reserved weekly in the case of a booking product.

Day 5 Inventory can be reserved daily in the case of a booking product.

Hour 6 Inventory can be reserved hourly in the case of a booking product.

LoginModel

Member Type Description

TabUrl String The absolute URL for the page.

ManageWishListModel

Member Type Description

TabID Integer Database object identifier for the page.

TabUrl String The absolute URL for the page.

ManufacturerFilterModel

Member Type Description

ManufacturerIDs List<int>

ManufacturerModel

Member Type Description

Description String Short description.

DisplayOrder Integer
Sort display order from
smallest to largest
number.

ManufacturerID Integer
Database object
identifier.

MetaDescription String Meta description.

MetaKeywords String Meta keywords.

Name String Distributor name.

ProductList
ProductListModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productlistmodel/rvdwkpvm/section)

Published Boolean

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section

ManufacturerViewModel

Member Type Description

ManufacturerID Integer?
The currently
selected
manufacturer.

ProductList
ProductListModel (http://www.revindex.com/Resources/Knowledge-

Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section)

Manufacturers
List<ManufacturerModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
manufacturermodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-manufacturermodel/rvdwkpvm/section

PagerModel

Member Type Description

PageSize Integer Number of items per page.

CurrentPageNumber Integer Current page number starting from 1.

TotalItems Integer Total number of items.

TotalPages Integer Number of pages given the page size.

PaymentMethodType

Name Value Description

AuthorizeNetCIM 18

AuthorizeNetSIM 13

Cash 1

Check 2

CreditCard 3

DotPay 21

MasterCardIGSHosted 14

Mollie 11

MoneyOrder 4

None 7

PayFast 8

PaymentExpress 22

PayPal 6

Paystation3Party 15

PayUBusiness 19

RewardsPoint 16

SagePayForm 17

SuomenVerkkomaksut 12

Towah 9

VirtualCardServicesPay 20

Voucher 10

WireTransfer 5

PriceFilterModel

Member Type Description

MinPrice Decimal

MaxPrice
Decimal (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productlistmodel/rvdwkpvm/section)

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section

ProductAttributeDefinitionModel

Member Type Description

Comparable Boolean

Determines if this
attribute type can be
used for product
comparison.

Description String Localized description.

DisplayOrder Integer Sort display order.

Filterable Boolean
Product list can filter by
this attribute type.

HelpText String Help displayed in tooltip.

Name String Localized name.

ProductAttributeDefinitionID Integer
Database object
identifier.

ProductAttributeGroup

ProductAttributeGroupModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productattributegroupmodel/rvdwkpvm/section)

ProductAttributeType

ProductAttributeType
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productattributetype/rvdwkpvm/section)

Published Boolean

StepSize Decimal
The incremental change
for decimal attribute type
input.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributegroupmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributetype/rvdwkpvm/section

ProductAttributeDefinitionSelectionModel

Member Type Description

DisplayOrder Integer Sort display order.

ProductAttributeDefinitionSelectionID Integer Database object identifier.

Text String

ProductAttributeFilterModel

Member Type Description

ProductAttributeDefinitionID Integer

Values List<String>

ProductAttributeGroupModel

Member Type Description

Description String Localized description.

DisplayOrder Integer Sort display order.

Name String Localized name.

ProductAttributeGroupID Integer Database object identifier.

ProductAttributeModel

Member Type Description

BooleanValue Boolean?

Boolean type value. If you
specify a value here, you
must not specify the
DecimalValue, IntegerValue,
SelectionValue or
StringValue.

DecimalValue Decimal?

Decimal type value. If you
specify a value here, you
must not specify the
BooleanValue, IntegerValue,
SelectionValue or
StringValue.

IntegerValue Integer?

Integer type value. If you
specify a value here, you
must not specify the
BooleanValue,
DecimalValue,
SelectionValue or
StringValue.

ProductAttributeID Integer Database object identifier.

ProductAttributeDefinitionID Integer

Associate this attribute to
the Product Attribute
Definition by its
ProductAttributeDefinitionID.

ProductAttributeDefinition

ProductAttributeDefinitionModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productattributedefinitionmodel/rvdwkpvm/section)

ProductID Integer?
Associate this attribute to
the product by its ProductID.

ProductVariantID Integer?
Associate this attribute to
the product variant by its
ProductVariantID.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributedefinitionmodel/rvdwkpvm/section

SelectionValue

List<ProductAttributeDefinitionSelectionModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productattributedefinitionselectionmodel/rvdwkpvm/section)>

Selection values

StringValue String

Localized string type value.
If you specify a value here,
you must not specify the
BooleanValue,
DecimalValue, IntegerValue
or SelectionValue.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributedefinitionselectionmodel/rvdwkpvm/section

ProductAttributeType

Name Value Description

Boolean 1 True or false type.

Integer 2

Decimal 3

String 4

Selection 5

ProductComparisonModel

Member Type Description

TabID Integer Database object identifier for the page.

TabUrl String The absolute URL for the page.

ProductComparisonViewModel

Member Type Description

Cart
CartModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-cartmodel/rvdwkpvm/section)

Checkout
CheckoutModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-checkoutmodel/rvdwkpvm/section)

ProductList
ProductListModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-

Storefront/design-models-productlistmodel/rvdwkpvm/section)

ProductVariants
List<ProductVariantModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-productvariantmodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-cartmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-checkoutmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productvariantmodel/rvdwkpvm/section

ProductComponentModel

Member Type Description

ComponentType
ProductComponentType (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productcomponenttype/rvdwkpvm/section)

DisplayOrder Integer

Name String

ProductComponentID Integer
Database
object
identifier.

ProductParts
List<ProductPartModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-model-
productpartmodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productcomponenttype/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-model-productpartmodel/rvdwkpvm/section

ProductComponentType

Name Value Description

Explicit 2 Parts are shown to customer.

Implicit 1 Parts are hidden from customer.

Multiple 3 Customer can select multiple parts.

Single 4 Customer can select only one from choices.

ProductDetailModel

Member Type Description

TabID Integer Database object identifier for the page.

TabUrl String The absolute URL for the page.

ProductDetailViewModel

Member Type Description

Cart
CartModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-cartmodel/rvdwkpvm/section)

Checkout
CheckoutModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
checkoutmodel/rvdwkpvm/section)

Login
LoginModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-loginmodel/rvdwkpvm/section)

ManageWishList
ManageWishListModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
pagermodel/rvdwkpvm/section)

Product
ProductModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productmodel/rvdwkpvm/section)

ProductAttributeDefinitions

List<ProductAttributeDefinitionModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-
productattributedefinitionmodel/rvdwkpvm/section)>

ProductAttributeGroups

List<ProductAttributeGroupModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-
productattributegroupmodel/rvdwkpvm/section)>

ProductComparison
ProductComparisonModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productcomparisonmodel/rvdwkpvm/section)

ProductVariant
ProductVariantModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productvariantmodel/rvdwkpvm/section)

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-cartmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-checkoutmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-loginmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-pagermodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributedefinitionmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributegroupmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productcomparisonmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productvariantmodel/rvdwkpvm/section

Shopping
ShoppingModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
shoppingmodel/rvdwkpvm/section)

ShowAddToWishList Boolean

ShowContinueShopping Boolean

ShowSocialShare Boolean

ShowViewCart Boolean

WishLists
List<WishListModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
wishlistmodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-shoppingmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-wishlistmodel/rvdwkpvm/section

ProductFilterModel

Member Type Description

PriceFilter
PriceFilterModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-pricefiltermodel/rvdwkpvm/section)

DistributorFilter

DistributorFilterModel (http://www.revindex.com/Resources/Knowledge-

Base/Revindex-Storefront/design-models-distributorfiltermodel/rvdwkpvm/section)

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productlistmodel/rvdwkpvm/section)

ManufacturerFilter
ManufacturerFilterModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
manufacturerfiltermodel/rvdwkpvm/section)

ProductAttributeFilters
List<ProductAttributeFilterModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productattributefiltermodel/rvdwkpvm/section)>

IsApplied Boolean
Indicates if
any filter is
used.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-pricefiltermodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-distributorfiltermodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-manufacturerfiltermodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributefiltermodel/rvdwkpvm/section

ProductFilterViewModel

Member Type Description

CategoryID Integer?

The currently
selected category
database object
identifier.

DistributorFilterable Boolean
Distributor can be
filtered.

DistributorID Integer?

The currently
selected distributor
database object
identifier.

Distributors
List<DistributorModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-distributormodel/rvdwkpvm/section)>

ManufacturerFilterable Boolean

ManufacturerID Integer?

The currently
selected
manufacturer
database object
identifier.

Manufacturers

List<ManufacturerModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-
manufacturermodel/rvdwkpvm/section)>

PriceFilterable Boolean

PriceStepSize Decimal

PageViewDisplayOrder

ProductListPageViewDisplayOrderType
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-
productlistpageviewdisplayordertype/rvdwkpvm/section)

PageViewMode String

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-distributormodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-manufacturermodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistpageviewdisplayordertype/rvdwkpvm/section

PageViewSize Integer

ProductAttributeDefinitions

List<ProductAttributeDefinitionModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-
productattributedefinitionmodel/rvdwkpvm/section)>

ProductAttributes

List<ProductAttributeModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-
productattributemodel/rvdwkpvm/section)>

ProductAttributeGroups

List<ProductAttributeGroupModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-
productattributegroupmodel/rvdwkpvm/section)>

ProductFilter
ProductFilterModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productfiltermodel/rvdwkpvm/section)

ProductList
ProductListModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productlistmodel/rvdwkpvm/section)

Products
List<ProductModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productmodel/rvdwkpvm/section)>

SearchQuery String

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributedefinitionmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributemodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributegroupmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productfiltermodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productmodel/rvdwkpvm/section

ProductInventoryEmptyBehaviorType

Name Value Description

DisallowOrder 1 Show product but disallow it from being ordered.

DisableProduct 2 Hide product.

AllowBackorder 3 Allow ordering even if inventory is empty.

ProductListModel

Member Type Description

TabID Integer Database object identifier for the page.

TabUrl String The absolute URL for the page.

ProductListPageViewDisplayOrderType

Name Value Description

AlphabeticalName 2

HighestPrice 5

HighestRatings 7

LowestPrice 4

LowestRatings 6

Newest 8

Oldest 9

Recommended 1

ReverseName 3

ProductListViewModel

Member Type Description

Cart

CartModel (http://www.revindex.com/Resources/Knowledge-

Base/Revindex-

Storefront/http://www.revindex.com/Resources/Knowledge-

Base/Revindex-Storefront/design-models-cartmodel/rvdwkpvm/section)

Category
CategoryModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
categorymodel/rvdwkpvm/section)

The current
selected category.

Checkout
CheckoutModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
checkoutmodel/rvdwkpvm/section)

Distributor
DistributorModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
distributormodel/rvdwkpvm/section)

The current
selected distributor.

FilteredProducts
List<ProductModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productmodel/rvdwkpvm/section)>

Current available
products with
product filtering
applied.

Manufacturer
ManufacturerModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-manufacturermodel/rvdwkpvm/section)

The current
selected
manufacturer.

PagedFilteredProducts

List<ProductModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-
Storefront/http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productmodel/rvdwkpvm/section)>

Current available
products with
product filtering
and paging
applied.

Pager
PagerModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
pagermodel/rvdwkpvm/section)

Paging for
products.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-cartmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-categorymodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-checkoutmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-distributormodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-manufacturermodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-pagermodel/rvdwkpvm/section

PageViewDisplayOrder

ProductListPageViewDisplayOrderType
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-
productlistpageviewdisplayordertype/rvdwkpvm/section)

PageViewMode String
The current
selected page view
mode.

PageViewSize Integer
Number of
products to display
per page.

ProductComparison

ProductComparisonModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-
productcomparisonmodel/rvdwkpvm/section)

Products
List<ProductModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productmodel/rvdwkpvm/section)>

Current available
products.

SearchQuery String
The current search
query.

ShowSubCategory Boolean

SubCategories
List<CategoryModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-categorymodel/rvdwkpvm/section)>

Categories
associated to the
current product list
view.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistpageviewdisplayordertype/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productcomparisonmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-categorymodel/rvdwkpvm/section

ProductModel

Member Type Description

AllowInternetOrder Boolean Allow purchase online.

AllowPhoneOrder Boolean Allow purchase by phone.

AllowProductReview Boolean
Allow customers to post
reviews and ratings.

AverageOverallRating Double

BuyingGuide String Buying guide text.

BuyingGuideName String
Override default name for
the buying guide
description.

CreateDate DateTime

DefaultDisplayGallery

GalleryModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
gallerymodel/rvdwkpvm/section)

Default display gallery
associated with this
product.

DefaultProductVariant

ProductVariantModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productvariantmodel/rvdwkpvm/section)

Default product variant.

DefaultThumbnailGallery

GalleryModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
gallerymodel/rvdwkpvm/section)

Default thumbnail gallery
associated with this
product.

DisplayOrder Integer
Product sort order from
smallest to largest
number.

DynamicFormCode

DynamicFormCodeModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
dynamicformcodemodel/rvdwkpvm/section)

Custom HTML or input
form elements.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-gallerymodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productvariantmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-gallerymodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-dynamicformcodemodel/rvdwkpvm/section

FAQ String FAQ text.

FAQName String
Override default name for
the FAQ description.

Featured Boolean

Indicate if product is
“featured” and should be
displayed on product list
module control even if no
category is selected.

FormattedMaxCombinedSellingPrice String
Formatted max combined
selling price.

FormattedMinCombinedSellingPrice String
Formatted min combined
selling price.

Galleries

List<GalleryModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
gallerymodel/rvdwkpvm/section)>

Gallery images belonging
to this product.

HasVariantGroupAssociation Boolean

IsFiltered Boolean

MaxCombinedSellingPrice Decimal
Max combined selling
price.

MaxCombinedSellingPriceWithTax Decimal
Max combined selling
price with tax included.

MetaDescription String Meta description.

MetaKeywords String Meta keywords.

MinCombinedSellingPrice Decimal
Min combined selling
price.

MinCombinedSellingPriceWithTax Decimal
Min combined selling
price with tax included.

Name String Product name.

Overview String Overview text.

OverviewName String
Override default name for
the overview description.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-gallerymodel/rvdwkpvm/section

PageTitle String Page title.

ProductAttributes

List<ProductAttributeModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productattributemodel/rvdwkpvm/section)>

Product attributes
associated with this
product.

ProductDetail

ProductDetailModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productdetailmodel/rvdwkpvm/section)

ProductID Integer Database object identifier.

ProductReviews

List<ProductReviewModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productreviewmodel/rvdwkpvm/section)>

Product reviews
associated with this
product.

ProductVariantGroups

List<ProductVariantGroupModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productvariantgroupmodel/rvdwkpvm/section)>

ProductVariants

List<ProductVariantModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productvariantmodel/rvdwkpvm/section)>

Available product variants
associated with this
product.

ProductType Integer Regular = 1

Published Boolean
Enable display of the
product.

Seller

SellerModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
sellermodel/rvdwkpvm/section)

ShowAddToCart Boolean

ShowAddToWishList Boolean

ShowBuyNow Boolean

ShowInventory Boolean

ShowMSRP Boolean

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributemodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productdetailmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productreviewmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productvariantgroupmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productvariantmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-sellermodel/rvdwkpvm/section

ShowPrice Boolean

ShowProductReviews Boolean

ShowQuantity Boolean

ShowRewardPoints Boolean

ShowSavings Boolean

ShowSeeDetails Boolean

ShowSKU Boolean

ShowSocialShare Boolean

ShowUpdate Boolean

Specifications String Specifications text.

SpecificationsName String
Override default name for
the specifications
description.

StartDate DateTime?
When to start publishing
product.

StopDate DateTime?
When to stop publishing
product.

Summary String Summary text.

Terms String Terms text.

TermsName String
Override default name for
the terms description.

UpdateDate DateTime

ProductPartModel

Member Type Description

DefaultQuantity Integer

MaxOrderQuantity Integer?

MinOrderQuantity Integer?

ProductPartID Integer
Database
object
identifier.

ProductVariant
ProductVariantModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productvariantmodel/rvdwkpvm/section)

ProductVariantID Integer

Quantity Integer?

Selected Boolean

ShowPrice Boolean

ShowQuantity Boolean

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productvariantmodel/rvdwkpvm/section

ProductReviewModel

Member Type Description

Approved Boolean

Comment String

CreateDate DateTime

DisplayName String

Email String

FirstName String

LastName String

OverallRating Integer

Product
ProductModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productmodel/rvdwkpvm/section)

ProductID Integer

ProductReviewID Integer
Database
object
identifier.

Title String

UpdateDate DateTime

User
UserModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-usermodel/rvdwkpvm/section)

UserHostAddress String

UserID Integer

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-usermodel/rvdwkpvm/section

ProductReviewViewModel

Member Type Description

AllowAnonymousAccount Boolean

Login
LoginModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-loginmodel/rvdwkpvm/section)

PagedProductReviews
List<ProductReviewModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productreviewmodel/rvdwkpvm/section)>

Pager
PagerModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-pagermodel/rvdwkpvm/section)

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-loginmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productreviewmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-pagermodel/rvdwkpvm/section

ProductSearchViewModel

Member Type Description

ProductList
ProductListModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productlistmodel/rvdwkpvm/section)

SearchQuery
String (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productlistmodel/rvdwkpvm/section)

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section

ProductShowcaseDisplayEffectType

Name Value Description

AutomaticAdvance 1

ButtonMouseOver 2

ButtonClick 3

ProductShowcaseScrollDirectionType

Name Value Description

Left 1

Right 2

Up 4

Down 8

ProductShowcaseViewModel

Member Type Description

Cart
CartModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-cartmodel/rvdwkpvm/section)

Checkout

CheckoutModel (http://www.revindex.com/Resources/Knowledge-Base/Revindex-

Storefront/design-models-checkoutmodel/rvdwkpvm/section)

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-
models-productlistmodel/rvdwkpvm/section)

DisplayEffect
ProductShowcaseDisplayEffectType
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-
models-productshowcasedisplayeffecttype/rvdwkpvm/section)

FrameDuration Integer

ProductID Integer?

Products
List<ProductModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-productmodel/rvdwkpvm/section)>

ScrollDirection
ProductShowcaseScrollDirectionType
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-
models-productshowcasescrolldirectiontype/rvdwkpvm/section)

ScrollDuration Integer

VisibleMaxItems Integer

Width String

WrapFrames Boolean

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-cartmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-checkoutmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productlistmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productshowcasedisplayeffecttype/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productshowcasescrolldirectiontype/rvdwkpvm/section

ProductVariantGroupFieldType

Name Value Description

ColorPicker 3

DropDownList 1

ImageSwatch 4

RadioButtonList 2

ProductVariantGroupModel

Member Type Description

DisplayOrder Integer

FIeldType

ProductVariantGroupFieldType
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-
productvariantgroupfieldtype/rvdwkpvm/section)

HelpText String

Name String

ProductVariantGroupID Integer
Database
object
identifier.

ProductVariantGroupOptions

List<ProductVariantGroupOptionModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-model-
productvariantgroupoptionmodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productvariantgroupfieldtype/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-model-productvariantgroupoptionmodel/rvdwkpvm/section

ProductVariantGroupOptionModel

Member Type Description

ColorCode String
Used for
ColorPicker
type.

DisplayOrder Integer

ImageFile String
Used for
ImageSwatch
type.

ImageUrl String
Used for
ImageSwatch
type.

Name String

ProductDetail
ProductDetailModel
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-productdetailmodel/rvdwkpvm/section)

ProductVariantGroupID Integer

ProductVariantGroupOptionID Integer
Database
object
identifier.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productdetailmodel/rvdwkpvm/section

ProductVariantModel

Member Type Description

AllowableOrderQuantityList List<Integer>

If variant can only be
purchased in distinct
quantities (e.g. 1, 3,
5), this list will contain
the allowable quantity
values.

AllowProductComparison Boolean
Allow product to be
compared with others.

BuyingGuide String Buying guide text.

BuyingGuideName String
Override default name
for the buying guide
description.

CombinedPercentSavings Decimal
The savings in
percentage.

CombinedPercentSavingsWithTax Decimal
The savings in
percentage including
taxes.

CombinedPrice Decimal

Combined price
includes cumulative
prices from any
bundled parts.

CombinedPriceWithTax Decimal
Combined price
including taxes.

CombinedPromotionPrice Decimal?
Combined promotion
price.

CombinedPromotionPriceWithTax Decimal?
Combined promotion
price including taxes.

CombinedSavings Decimal Combined savings.

CombinedSavingsWithTax Decimal
Combined savings
with tax.

CombinedSellingPrice Decimal
Combined selling
price.

CombinedSellingPriceWithTax Decimal
Combined selling
price including tax.

DefaultQuantity Integer

Depth Decimal
Product depth in cm.
Enter zero if not used.

DisplayOrder Integer
Product sort order
from smallest to
largest number.

Distributor

DistributorModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
distributormodel/rvdwkpvm/section)

DistributorID Integer?

Associate this variant
to a distributor by its
DistributorID. If you
specify DistributorID,
the DistributorKey will
be ignored.

DistributorSKU String
Distributor SKU
number.

DynamicFormCode

DynamicFormCodeModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
dynamicformcodemodel/rvdwkpvm/section)

Custom HTML or input
form elements.

ExcludeBookingDates List<DateTime>

FAQ String FAQ text.

FAQName String
Override default name
for the FAQ
description.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-distributormodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-dynamicformcodemodel/rvdwkpvm/section

FormattedCombinedPercentSavings String

Text representation of
the combined percent
savings in current
culture and currency.

FormattedCombinedPrice String

Text representation of
the combined price in
current culture and
currency.

FormattedCombinedPromotionPrice String

Text representation of
the combined
promotion price in
current culture and
currency.

FormattedCombinedSavings String

Text representation of
the combined savings
in current culture and
currency.

FormattedCombinedSellingPrice String

Text representation of
the combined selling
price in current culture
and currency.

FormattedMSRP String
Text representation of
the MSRP in current
culture and currency.

FormattedPercentSavings String

Text representation of
the percent savings in
current culture and
currency.

FormattedPrice String
Text representation of
the price in current
culture and currency.

FormattedPromotionPrice String

Text representation of
the promotion price in
current culture and
currency.

FormattedSavings String
Text representation of
the savings in current
culture and currency.

FormattedSellingPrice String

Text representation of
the selling price in
current culture and
currency.

Galleries

List<GalleryModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
gallerymodel/rvdwkpvm/section)>

Gallery images
belonging to this
variant.

HasAcceptableInventory Boolean

HasFormFields Boolean

Height Decimal
Product height in cm.
Enter zero if not used.

Inventory Integer? Inventory level.

InventoryEmptyBehavior

ProductInventoryEmptyBehaviorType
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productinventoryemptybehaviortype/rvdwkpvm/section)

How product behaves
when inventory is
empty.

InventoryUnitType

InventoryUnitType
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
inventoryunittype/rvdwkpvm/section)

Indicate how inventory
is treated especially in
the case of a booking
product. For regular
product, the unit type
should be Constant.

IsCompared Boolean

MainBuyingGuide String

Returns the buying
guide description from
the variant if available,
otherwise from the
product.

MainBuyingGuideName String

Returns the buying
guide name from the
variant if available,
otherwise from the
product.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-gallerymodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productinventoryemptybehaviortype/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-inventoryunittype/rvdwkpvm/section

MainDetailedGalleries

List<GalleryModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
gallerymodel/rvdwkpvm/section)>

Returns the detailed
gallery images from
the variant if available,
otherwise from the
product.

MainDetailedGallery

GalleryModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
gallerymodel/rvdwkpvm/section)

Returns the first
detailed gallery image
from the variant if
available otherwise
from the product.

MainDisplayGalleries

List<GalleryModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
gallerymodel/rvdwkpvm/section)>

Returns the display
gallery image from the
variant if available
otherwise from the
product.

MainDisplayGallery

GalleryModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
gallerymodel/rvdwkpvm/section)

Returns the first
display gallery image
from the variant if
available otherwise
from the product.

MainDynamicFormCode

DynamicFormCodeModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
dynamicformcodemodel/rvdwkpvm/section)

Returns the custom
HTML or input form
elements from the
variant if available
otherwise from the
product.

MainFAQ String

Returns the FAQ
description from the
variant if available,
otherwise from the
product.

MainFAQName String

Returns the FAQ
name from the variant
if available, otherwise
from the product.

MainOverview String

Returns the overview
description from the
variant if available,
otherwise from the
product.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-gallerymodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-gallerymodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-gallerymodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-gallerymodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-dynamicformcodemodel/rvdwkpvm/section

MainOverviewName String

Returns the overview
name from the variant
if available, otherwise
from the product.

MainProductAttributes

List<ProductAttributeModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productattributemodel/rvdwkpvm/section)>

MainSpecifications String

Returns the
specifications
description from the
variant if available,
otherwise from the
product.

MainSpecificationsName String

Returns the
specifications name
from the variant if
available, otherwise
from the product.

MainSummary String

Returns the summary
description from the
variant if available,
otherwise from the
product.

MainTerms String

Returns the terms
description from the
variant if available,
otherwise from the
product.

MainTermsName String

Returns the terms
name from the variant
if available, otherwise
from the product.

MainThumbnailGallery

GalleryModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
gallerymodel/rvdwkpvm/section)

Returns the first
thumbnail gallery
image from the variant
if available otherwise
from the product.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributemodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-gallerymodel/rvdwkpvm/section

Manufacturer

ManufacturerModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
manufacturermodel/rvdwkpvm/section)

ManufacturerID Integer?

Associate this variant
to a manufacturer by
its ManufacturerID. If
you specify
ManufacturerID, the
ManufacturerKey will
be ignored.

ManufacturerSKU String
Manufacturer SKU
number.

MaxBookingDate DateTime?

MaxBookingTime TimeSpan?

MaxOrderQuantity Integer?
Maximum order
quantity.

MetaDescription String
Localized meta
description.

MetaKeywords String
Localized meta
keywords.

MinBookingDate DateTime?

MinBookingTime TimeSpan?

MinOrderQuantity Integer?
Minimum order
quantity.

MSRP Decimal?
Manufacturer
suggested retail price.

MSRPWithTax Decimal?
Manufacturer
suggested retail price
including tax.

Name String Product variant name.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-manufacturermodel/rvdwkpvm/section

Overview String Overview text.

OverviewName String
Override default name
for the overview
description.

PercentSavings Decimal

PercentSavingsWithTax Decimal

Price Decimal

PriceText String

Any text specified
here will be shown to
the customer instead
of the actual price.

PriceWithTax Decimal

ProductCost Decimal? Cost of product.

Product ProductModel

ProductAttributes

List<ProductAttributeModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productattributemodel/rvdwkpvm/section)>

ProductComponents

List<ProductComponentModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productcomponentmodel/rvdwkpvm/section)>

ProductDetail

ProductDetailModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productdetailmodel/rvdwkpvm/section)

ProductID Integer

Reference the
corresponding product
by its ProductID. If you
specify ProductID, the
ProductKey will be
ignored.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productattributemodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productcomponentmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productdetailmodel/rvdwkpvm/section

ProductVariantID Integer

Database object
identifier. This value
must be specified
when performing an
update. Only this
value is required when
performing a delete
action.

PromotionPrice Decimal? Promotion price.

PromotionPriceWithTax Decimal?
Promotion price
including tax.

Published Boolean
Enable display of the
product.

RecurringInterval Integer

The recurring repeat
interval for the
RecurringIntervalType.
Enter zero for non-
recurring.

RecurringIntervalType

RecurringIntervalType
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
recurringintervaltype/rvdwkpvm/section)

RecurringMaxRepeat Integer?

The number of times
to repeat the recurring
order or leave blank to
repeat perpetually.

RecurringMinRepeat Integer?

The minimum number
of times that must be
repeated before
allowing customers
from cancelling future
recurring orders.

RequiredProducts

List<RequiredProductModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
requiredproductmodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-recurringintervaltype/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-requiredproductmodel/rvdwkpvm/section

RequireHandling Boolean
Product requires
handling.

RequireShipping Boolean
Product requires
shipping.

RewardsPointsQualified Integer

SalesType

SalesType
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salestype/rvdwkpvm/section)

Determine if product
can be purchased at
the listed price or must
be quoted first.

Savings Decimal

SavingsWithTax Decimal

SellingPrice Decimal
The selling price
including promotions.

SellingPriceWithTax Decimal
The selling price
including promotions
and tax.

SKU String Product SKU

Specifications String Specifications text.

SpecificationsName String
Override default name
for the specifications
description.

Summary String Summary text.

Terms String Terms text.

TermsName String
Override default name
for the terms
description.

UniversalProductCode String
Universal product
code.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salestype/rvdwkpvm/section

Weight Decimal
Product weight in
gram. Enter zero if not
used.

Width Decimal
Product width in cm.
Enter zero if not used.

RecurringIntervalType

Name Value Description

Day 1

Week 2

Month 3

Year 4

RequiredProductModel

Member Type Description

DeferDate DateTime?

DeferInterval Integer

DeferIntervalType
IntervalType (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-intervaltype/rvdwkpvm/section)

ProductVariant
ProductVariantModel (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productvariantmodel/rvdwkpvm/section)

ProductVariantID Integer

Published Boolean

Quantity Integer

RequiredProductID Integer
Database
object
identifier.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-intervaltype/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productvariantmodel/rvdwkpvm/section

SalesOrderDetailModel

Member Type Description

Amount Decimal

AmountWithTax Decimal Amount with tax.

BookingStartDate DateTime?

BookingStopDate DateTime?

CombinedAmount Decimal

Combined amount
includes sum of
component part amounts
in child sales order
details.

CombinedAmountWithTax Decimal
Combined amount with
tax.

CombinedDiscountAmount Decimal

Combined discount
includes sum of
component part
discounts in child sales
order details.

CombinedPrice Decimal

Combined price includes
sum of component part
prices in child sales order
details.

CombinedTotalAmountWithTax Decimal

Combined total amount
includes sum of
component parts total
amounts in child sales
order details.

DiscountAmount Decimal

DynamicFormResult Dictionary<string, List<string>>
Results from custom
form fields.

FormattedBookingStartDate String
Text representation of
booking start date.

FormattedBookingStopDate String
Text representation of
booking stop date.

FormattedCombinedAmount String

Text representation of
combined amount in
current culture and
currency.

FormattedCombinedDiscountAmount String

Text representation of
combined discount
amount in current culture
and currency.

FormattedCombinedPrice String
Text representation of
combined price in current
culture and currency.

FormattedCombinedTotalAmount String

Text representation of
combined total amount in
current culture and
currency.

FormattedDiscountAmount String

Text representation of
discount amount in
current culture and
currency.

FormattedPrice String
Text representation of
price in current culture
and currency.

ParentSalesOrderDetailID Integer?

Parent sales order detail
database object identifier
if this is a component
part belonging to a
bundled product.

PartQuantity Integer

Price Decimal

ProductName String

ProductVariant

ProductVariantModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
productvariantmodel/rvdwkpvm/section)

ProductVariantID Integer
Product variant database
object identifier.

ProductVariantName String

Quantity Integer

SalesOrderDetailID Integer
Database object
identifier.

Status

SalesOrderDetailStatusType
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salesorderdetailstatustype/rvdwkpvm/section)

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-productvariantmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salesorderdetailstatustype/rvdwkpvm/section

SalesOrderDetailStatusType

Name Value Description

Pending 1

Ordered 2

Processing 3

Completed 4

Quoted 9

SalesOrderModel

Member Type Description

BalanceDue Decimal

BillingCity String

BillingCompany String

BillingCountryCode String

BillingCountryName String

BillingEmail String

BillingFirstName String

BillingLastName String

BillingPhone String

BillingPostalCode String

BillingStreet String

BillingStreet1 String

BillingStreet2 String

BillingSubdivisionCode String

BillingSubdivisionName String

BusinessTaxNumber String

CouponCodes String

DynamicFormResult Dictionary<String, List<String>>

Custom field
results stored
as a
dictionary of
key values
pair.

FormattedBalanceDue String

Text
representation
of balance
due amount in
current culture
and currency.

FormattedOrderDate String

Text
representation
of the order
date in current
culture.

FormattedRewardsPointsQualified String

Text
representation
of qualified
rewards point.

FormattedSubTotalAmount String

Text
representation
of subtotal
amount in
current culture
and currency.

FormattedTotalAmount String

Text
representation
of total
amount in
current culture
and currency.

FormattedTotalHandlingAmount String

Text
representation
of total
handling
amount in
current culture
and currency.

FormattedTotalPaymentReceived String

Text
representation
of total
payment
received in
current culture
and currency.

FormattedTotalSalesOrderDetailDiscountAmount String

Text
representation
of total sales
order detail
discount
amount in
current culture
and currency.

FormattedTotalSavingsAmount String

Text
representation
of total
savings
amount in
current culture
and currency.

FormattedTotalShippingAmount String

Text
representation
of total
shipping
amount in
current culture
and currency.

FormattedTotalTaxAmount String

Text
representation
of total tax
amount in
current culture
and currency.

HasQuotedProduct Boolean

Determine if
sales order
contains
products that
must be
quoted.

MainQuantity Integer

Total quantity
of items
purchased
excluding
component
parts.

MainSalesOrderDetails

List<SalesOrderDetailModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salesorderdetailmodel/rvdwkpvm/section)>

List of sales
order details
excluding
component
parts.

OrderDate DateTime

OrderLocked Boolean

Indicates if
order should
not allow
editing items
in the cart.

PurchaseOrderNumber String

RequireHandling Boolean

One or
several items
in the order
requires
handling.

RequireShipping Boolean

One or
several items
in the order
requires
shipping.

RewardsPointsQualified Integer

The number
of rewards
points
qualified for
this purchase.

SalesOrderDetails

List<SalesOrderDetailModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salesorderdetailmodel/rvdwkpvm/section)>

SalesOrderID Integer
Database
object
identifier.

SalesOrderNumber String
The public
display sales
order number.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salesorderdetailmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salesorderdetailmodel/rvdwkpvm/section

SalesOrders

List<SalesOrderModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salesordermodel/rvdwkpvm/section)>

SalesPayments

List<SalesPaymentModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salespaymentmodel/rvdwkpvm/section)>

ShippingCity String

ShippingCompany String

ShippingCountryCode String

ShippingCountryName String

ShippingEmail String

ShippingFirstName String

ShippingLastName String

ShippingPhone String

ShippingPostalCode String

ShippingStreet String

ShippingStreet1 String

ShippingStreet2 String

ShippingSubdivisionCode String

ShippingSubdivisionName String

SubTotalAmount Decimal

Subtotal
amount is the
sum of all
sales order
detail
amounts
before taxes,
shipping, etc.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salesordermodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salespaymentmodel/rvdwkpvm/section

SubTotalAmountWithTax Decimal
Subtotal
amount with
tax.

TotalAmount Decimal

Total amount
includes all
subtotal,
handling,
shipping,
taxes, etc.

TotalHandlingAmount Decimal

TotalHandlingAmountWithTax Decimal

TotalPaymentReceived Decimal

TotalQuantity Integer
Total number
of items
purchased.

TotalSalesOrderDetailDiscountAmount Decimal

TotalSavingsAmount Decimal

TotalShippingAmount Decimal
Total shipping
amount.

TotalShippingAmountWithTax Decimal
Total shipping
amount with
tax.

TotalTaxAmount Decimal

SalesOrderSetModel
The Storefront supports the marketplace capability and product warehousing. Products sold by different sellers or reside in
different warehouses must be recorded in different sales order objects. This separation allows each sales order to have
different shipping origins, taxes and charges. The SalesOrderSetModel is a top level container for holding multiple
SalesOrderModels (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-
salesordermodel/rvdwkpvm/section) that may be active at the same time.

Member Type Description

BalanceDue Decimal

BillingCity String

BillingCompany String

BillingCountryCode String

BillingCountryName String

BillingEmail String

BillingFirstName String

BillingLastName String

BillingPhone String

BillingPostalCode String

BillingStreet String

BillingStreet1 String

BillingStreet2 String

BillingSubdivisionCode String

BillingSubdivisionName String

BusinessTaxNumber String

CouponCodes String

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salesordermodel/rvdwkpvm/section

DynamicFormResult Dictionary<String, List<String>>

Custom field
results stored
as a
dictionary of
key values
pair.

FormattedBalanceDue String

Text
representation
of balance
due amount in
current culture
and currency.

FormattedOrderDate String

Text
representation
of the order
date in current
culture.

FormattedRewardsPointsQualified String

Text
representation
of qualified
rewards point.

FormattedSubTotalAmount String

Text
representation
of subtotal
amount in
current culture
and currency.

FormattedTotalAmount String

Text
representation
of total
amount in
current culture
and currency.

FormattedTotalHandlingAmount String

Text
representation
of total
handling
amount in
current culture
and currency.

FormattedTotalPaymentReceived String

Text
representation
of total
payment
received in
current culture
and currency.

FormattedTotalSalesOrderDetailDiscountAmount String

Text
representation
of total sales
order detail
discount
amount in
current culture
and currency.

FormattedTotalSavingsAmount String

Text
representation
of total
savings
amount in
current culture
and currency.

FormattedTotalShippingAmount String

Text
representation
of total
shipping
amount in
current culture
and currency.

FormattedTotalTaxAmount String

Text
representation
of total tax
amount in
current culture
and currency.

HasQuotedProduct Boolean

Determine if
sales order
contains
products that
must be
quoted.

MainQuantity Integer

Total quantity
of items
purchased
excluding
component
parts.

MainSalesOrderDetails

List<SalesOrderDetailModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salesorderdetailmodel/rvdwkpvm/section)>

List of sales
order details
excluding
component
parts.

OrderDate DateTime

OrderLocked Boolean

Indicates if
order should
not allow
editing items
in the cart.

PurchaseOrderNumber String

RequireHandling Boolean

One or
several items
in the order
requires
handling.

RequireShipping Boolean

One or
several items
in the order
requires
shipping.

RewardsPointsQualified Integer

The number
of rewards
points
qualified for
this purchase.

SalesOrderDetails

List<SalesOrderDetailModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salesorderdetailmodel/rvdwkpvm/section)>

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salesorderdetailmodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salesorderdetailmodel/rvdwkpvm/section

SalesOrders

List<SalesOrderModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salesordermodel/rvdwkpvm/section)>

SalesPayments

List<SalesPaymentModel
(http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-
salespaymentmodel/rvdwkpvm/section)>

ShippingCity String

ShippingCompany String

ShippingCountryCode String

ShippingCountryName String

ShippingEmail String

ShippingFirstName String

ShippingLastName String

ShippingPhone String

ShippingPostalCode String

ShippingStreet String

ShippingStreet1 String

ShippingStreet2 String

ShippingSubdivisionCode String

ShippingSubdivisionName String

SubTotalAmount Decimal

Subtotal
amount is the
sum of all
sales order
detail
amounts
before taxes,
shipping, etc.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salesordermodel/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-salespaymentmodel/rvdwkpvm/section

SubTotalAmountWithTax Decimal
Subtotal
amount with
tax.

TotalAmount Decimal

Total amount
includes all
subtotal,
handling,
shipping,
taxes, etc.

TotalHandlingAmount Decimal

TotalHandlingAmountWithTax Decimal

TotalPaymentReceived Decimal

TotalQuantity Integer
Total number
of items
purchased.

TotalSalesOrderDetailDiscountAmount Decimal

TotalSavingsAmount Decimal

TotalShippingAmount Decimal
Total shipping
amount.

TotalShippingAmountWithTax Decimal
Total shipping
amount with
tax.

TotalTaxAmount Decimal

SalesPaymentModel
The SalesPaymentModel holds payments belonging to a SalesOrderModel.

Member Type Description

Amount Decimal

CreditCardHint String
The last 4 digits of the
credit card if payment is a
credit card type.

FormattedAmount String
Text representation of the
amount in current culture
and currency.

FormattedHint String
Text representation
merged from the payment
or credit card hint.

PaymentHint String
Hint from other types of
payment method.

PaymentMethod
PaymentMethodType
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/design-models-paymentmethodtype/rvdwkpvm/section)

SalesPaymentID Integer Object identifier.

VoucherHint String
Voucher code hint if
payment is a voucher type.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-paymentmethodtype/rvdwkpvm/section

SalesType

Name Value Description

Sale 1 Product price is known and is for sale.

Quote 2 Product price is unknown and must be quoted.

SellerModel

Member Type Description

City String

CountryCode String

Description String

Email String

Name String

Phone String

PostalCode String

SellerID Integer

Street String

SubdivisionCode String

ShoppingModel

Member Type Description

TabID Integer Database object identifier for the page.

TabUrl String The absolute URL for the page.

UserModel

Member Type Description

DisplayName String

Email String

FirstName String

LastName String

UserID Integer

ValidationResultModel

Member Type Description

Message String

WishListModel

Member Type Description

CreateDate DateTime

Description String

EventCity String

EventCountryCode String

EventDate DateTime?

EventSubdivisionCode String

Name String

PersonalMessage String

Published Boolean

Registrant2FirstName String

Registrant2LastName String

RegistrantFirstName String

RegistrantLastName String

ShippingCity String

ShippingCompany String

ShippingCountryCode String

ShippingFirstName String

ShippingLastName String

ShippingPostalCode String

ShippingStreet String

ShippingSubdivisionCode String

UserID Integer

WishListGUID Guid

WishListID Integer

WishListType
WishListType (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/design-models-wishlisttype/rvdwkpvm/section)

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/design-models-wishlisttype/rvdwkpvm/section

WishListType

Name Value Description

Baby 2

Birthday 3

Other 1

Wedding 4

Styling Telerik controls
Many of the Storefront controls utilize the Telerik controls and are officially supported by DNN (any control you see that has
the Dnn<Control> prefix are all RadControls from Telerik such as "DnnCalendar"). To style the Telerik controls, you have
several options:

1. Either create a custom display template and edit the HTML/ASP.NET properties of the controls to change the button
styles. Here's some demo and property reference online at Telerik (you'll also find examples for other Telerik controls on
that same page on the left menu):

http://demos.telerik.com/aspnet-ajax/... (http://demos.telerik.com/aspnet-ajax/button/examples/overview/defaultcs.aspx)

http://www.telerik.com/help/aspnet-aj... (http://www.telerik.com/help/aspnet-ajax/button_overview.html)

2. You can make use of the Telerik style builder site (http://stylebuilder.telerik.com/New.aspx). Give the Skin name "Default"
and select any Base skin. Then select the control you want to adjust and click Create. Edit the styles and click Save.
Download the CSS package and extract it to open up the included CSS file. Copy and paste the entire CSS styles to the
bottom of your portal CSS file under Admin > Site Settings page.

3. The other way is to modify/include CSS as part of your skin templates under the WebControlSkin folder for each control
type. You can follow the example of standard DNN skin (_default or MinimalEntropy) that already includes some
WebControlSkin CSS if you look under your Web site folder:

\Portals_default\Skins_default\WebControlSkin\

Follow the CSS reference on the Telerik web site:

http://www.telerik.com/help/aspnet-aj... (http://www.telerik.com/help/aspnet-ajax/button_appearancecssfileselectors.html)

4. If you simply what to modify it to follow a theme, you can also try to use certain standard skins that are included with
Telerik controls by setting the Skin="xxx" property on the Dnn<Control> tag. Not every skin is included but the common
ones should work. For example:

<dnn2:DnnRadButton ... Skin="Simple" ...

You can see the examples here by clicking on the top right button to switch skin or see the reference:

http://demos.telerik.com/aspnet-ajax/... (http://demos.telerik.com/aspnet-ajax/button/examples/default/defaultcs.aspx)

http://www.telerik.com/help/aspnet-aj... (http://www.telerik.com/help/aspnet-ajax/button-appearance-skins.html)

http://demos.telerik.com/aspnet-ajax/button/examples/overview/defaultcs.aspx
http://www.telerik.com/help/aspnet-ajax/button_overview.html
http://stylebuilder.telerik.com/New.aspx
http://www.telerik.com/help/aspnet-ajax/button_appearancecssfileselectors.html
http://demos.telerik.com/aspnet-ajax/button/examples/default/defaultcs.aspx
http://www.telerik.com/help/aspnet-ajax/button-appearance-skins.html

Understanding CSS Precedence
If you're styling the Web page or controls using CSS, it's important to understand DotNetNuke CSS precedence. There are
many CSS files loaded on a page and the order they get loaded affects the final appearance on the page. Below shows
the order and sequence that CSS files get loaded onto your page.

1. /DesktopModule/<ModuleName>/Module.css
The module CSS gets loaded onto the page first if you have modules on the page.

2. /Portals/_default/Default.css
This is the default CSS that comes included with DotNetNuke.

3. /Portals/<PortalID or _default>/Skins/<SkinName>/Skin.css
Your site's skin also includes a CSS file.

4. /Portals/<PortalID or _default>/Skins/<SkinName>/<SkinName>.css
Your site's skin may also includes a CSS file.

5. /Portals/<PortalID or _default>/Containers/<ContainerName>/Container.css
Your site's container includes a CSS file.

6. /Portals/<PortalID or _default>/Containers/<ContainerName>/<ContainerName>.css
Your site's container includes a CSS file.

7. /Portals/<PortalID>/Portal.css
Your portal's CSS file gets downloaded last, which also means it overrides all other CSS files for the same rule.

8. Inline styles
Lastly, any CSS inline styles will always override any CSS rules in the files.

Knowing how the precedence works, if you need to override a CSS rule, the easiest way is to copy or write the new rules
in the Portal.css file if you don't have access to the skin packages.

How to override CSS styles
You'll find the CSS styles used in Revindex Storefront follows closely to the DNN UX (http://uxguide.dotnetnuke.com/)
standard therefore making it very easy to style module elements simply by overriding the style rules in your portal CSS.
Please see the video tutorial below on how to override styles from your portal CSS.

http://uxguide.dotnetnuke.com/

Shopping Cart Flow
The typical checkout flow consists of the following steps. The flow determines how and when various price, discount,
shipping and tax calculations are performed base on the available data collected from the user (e.g. Shipping cost can only
be calculated after user supplies his shipping address during checkout. Similarly, taxes can only be calculated after user
supplies his billing address).

Customer initiates checkout
The following steps below are typical of how a customer progresses from browsing to completing a purchase. Every
business is different and the actual steps may vary.

1. System generates list of available products.

2. Customer views products page.

3. Customer select product of interest.

4. System generates product detail, calculates price, apply any promotion and verifies product availability.

5. Customer adds product to cart.

6. System verifies order and approximates sub-total before shipping/handling cost and taxes.

7. Customer proceeds to checkout.

8. System prompts customer to login, register or checkout as guest user.

9. Customer enters billing, shipping information.

10. System determines the available shipping methods.

11. Customer selects the desired shipping method.

12. Customer enters coupon.

13. System verifies order; apply discounts, shipping cost, handling cost and taxes before calculating final total.

14. Customer reviews final total and enters voucher and payment information.

15. Customer places order.

16. System validates order. If order is invalid, customer is redirected back to checkout page.

17. System processes payment. If payment fails, customer is redirected back to checkout page.

18. System saves the order and payment information.

Order Status = Ordered

Payment Status = Pending

Shipping Status = Not Required/Not Shipped

For a purchase order, the Order Status will be set to Pending since no payment is actually collected.

19. System decrements product & coupon inventory. For a purchase order, the product and coupon inventories are

unchanged since no actual order has taken place.

20. If the Configuration > Checkout has the Run action on checkout option selected, the system will automatically run the

place order action rule (e.g. grant security role, execute Web request).

21. System generates confirmation details and sends out notification to customer and Storefront administrator.

22. Customer views the confirmation page and receives receipt.

Merchant fulfills new order
The following steps below are typical of how the store operates. Every business is different and your own steps may vary.
You can also automate many of these tasks by using the action rules to automatically change statuses immediately after
checkout. Please see How to force order and payment status (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section) for more information.

1. Merchant reviews order and updates progress so customers can see that the order is being processed. You can skip this

step if your order to fulfillment steps are very quick.

Order Status = Processing

2. Merchant verifies payment for fraud and marks payment as completed if received.

Payment Status = Paid

3. Merchant runs place order action (e.g. grant security role, execute Web request). This step is not required if
the Configuration > Checkout has the Run action on checkout option selected, which automatically runs the
action rule during customer checkout. If you're selling vouchers and issuing access rights, you want to issue them
now. You can also award loyalty points to your customer at this stage.

4. If product requires shipping, merchant ships product once paid. In the case of Cash on Delivery (C.O.D), the product
may be shipped first before receiving payment. If you have a tracking number from your post office, you may enter it
with the order detail so that your customers can also view it for their own follow-up.

Shipping Status = Shipped

5. Merchant completes order. Any downloadable product (virtual goods) will automatically become available when
order is marked Completed or payment is Paid.

Order Status = Completed

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section

Merchant cancels bad order
The following steps below are typical of how the store operates. Every business is different and your own steps may vary.
You can also automate many of these tasks by using the action rules to automatically change statuses immediately after
checkout. Please see How to force order and payment status (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section) for more information.

1. Merchant reviews order and updates progress.

Order Status = Processing

2. If payment failed or money is never received, the merchant cancels payment.

Payment Status = Cancelled/Declined

If payment is received, you want to select that payment and perform a refund. Please see How to refund payment
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-refund-
payment/rvdwkpvm/section) for more information.

Payment Status = Refunded

3. Merchant increments product/coupon inventory and undo any custom action (e.g. revoke security role, etc.). You
should also revoke any issued voucher or rights.

4. Merchant closes order.

Order Status = Cancelled/Declined

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-refund-payment/rvdwkpvm/section

Merchant fulfills recurring order
The following steps below are typical of how the store operates. Every business is different and your own steps may vary.
You can also automate many of these tasks by using the action rules to automatically change statuses immediately after
checkout. Please see How to force order and payment status (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section) for more information.

1. When a previously saved order is due to recur, the system generates a new order for customer. When the preferred
payment uses credit card, the system will automatically attempt to charge the card and upon success will decrement
the inventory. Also, if the Configuration > Checkout has the Run action on checkout option selected, the system
will automatically run the place order action rule. In all other cases where the system is not able to automatically
collect the payment successfully (e.g. wire transfer, cash payment, credit card declined, etc.), the inventory is not
adjusted. Discounts, shipping, handling costs and taxes are automatically applied to order.

Because recurring order normally repeats over a long period of time and many factors can affect the validity of the
order (e.g. customer credit card expired, product features changed, inventory is empty, changes to available
shipping methods, changes to business and legal requirements, etc.), it is the responsibility of the merchant to verify
the new order is valid and issue the payment collection manually as needed.

When a payment is successfully paid or the total amount is $0.00, the system will mark the following statuses.

Order Status = Ordered
Payment Status = Pending
Shipping Status = Not Required/Not Shipped

If the payment failed and the total amount is greater than $0.00, the system will mark the following statuses

Order Status = Ordered
Payment Status = Incomplete
Shipping Status = Not Required/Not Shipped

If the Payment Status is Incomplete, an invoice is sent out to request for payment, otherwise a receipt is sent out.

2. Merchant reviews order and marks order as valid. You can skip this step if your order to fulfillment steps are very
quick.

Order Status = Processing

3. Merchant decrements product inventory level. If payment was automatically collected successfully, you don’t need to
adjust inventory level.

4. Merchant creates a new payment and collects the money if payment is not already collected. In the case of credit
card, the system will attempt to collect the payment automatically.

Payment Status = Paid

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section

5. Merchant runs place order actions (e.g. grant security role, execute Web request). This step is not required if
the Configuration > Checkout has the Run action on checkout option selected, which automatically runs the
action rule on recurring order creation.

6. If product requires shipping, administrator ships product once paid. In the case of Cash on Delivery (C.O.D), the
product may be shipped first before receiving payment.

Shipping Status = Shipped

7. Merchant closes order. Any downloadable product (virtual goods) will automatically become available when order is
marked Completed or payment is Paid.

Order Status = Completed

Understanding payment risk
By default, for your security and best practices, Revindex Storefront will mark the payment as "Pending" to encourage the
store admin to manually verify each order for fraud, validity of the order, etc. There is no confusion between paid and
unpaid. "Pending" status simply means the payment is received but should be verified for correctness. If the credit card
failed to charge in the first place, the order would go into the "Incomplete" status. If your site receives very few fraud
depending on what you sell, you can create a Place order action rule to mark all orders as "Paid" immediately. A place
order action rule only runs when the order is completed (payment received and customer got all the way to the
confirmation page). Please see How to force order and payment status (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section) for more information.

Certain payment gateways such as PayPal will report payment approved but still places it on hold internally for
international payments, payment received in another currency or when a high fraud risk has been detected. In this case,
the money is authorized but not yet deposited and the merchant needs to log into PayPal to manually confirm the payment
for the money to be deposited into the account. If you didn't confirm the payment in PayPal, you may find out days later
that the money never got deposited or the customer cancelled the payment in between while your product has shipped.

Another example, if you're accepting credit card on your site, you may have fraud and this is indicated by the AVS
response code. AVS stands for Address Verification System and can report street address match, postal code match only
or full match. The credit card payment gateway will always approve the transaction, but in reality, the store owner needs to
decide if the AVS result is acceptable for your store depending on what you sell, the amount of risk you are willing to
tolerate. For example, some shops will reject the order if the AVS reports street address match only and not postal code
match to avoid high number of charge backs.

Yet, another possibility is your site charged the order to a recently stolen credit card and the payment gateway approved
the order. Usually the cardholder will report the card as stolen within 24 hours and the funds will be reversed. If your
business suffers from high risk of fraud, you may want to wait a fixed amount of time prior to shipping out products.

Revindex Storefront is built with security in mind to encourage best practices but you are certainly welcome to automate
certain steps where it makes sense for your kind of business. Please see Fraud risk
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/fraud-risk/rvdwkpvm/section) for more
information on using fraud score to manage your business risk.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-force-order-and-payment-status/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/fraud-risk/rvdwkpvm/section

How to force order and payment status
If your business has a low risk for fraud, you may want to automatically mark all orders as "Completed" and payments as
"Paid". Please see the topic on Understanding payment risk (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/understanding-payment-risk/rvdwkpvm/section) for more information on fraud and reversable
payments.

To do so, you can simply create a Place order action rule under Configuration > Checkout menu and set it to
automatically mark all order status as "Completed" and payment status as "Paid". You can also use the custom rule to only
set the statuses when certain conditions are met (e.g. update status only for Credit card payments and not by Wire transfer
or large amounts exceeding $500).

Please note if you sell recurring products, you should employ the Custom rule in your Place order action to test for
successful payment prior to setting the order as "Completed". In a typical checkout flow when the credit card declines, the
customer is prompted to retry entering his credit card until it succeeds therefore there is no need to test for successful
payment since the checkout form handles it for you. A recurring order is different than a normal checkout because the
process is automatic and happens behind the scene. The Storefront creates the recurring order even if the credit card
declined since there is no way to prompt the user to retry. As such, it's important to test for successful payment in your
custom rule before setting the order status as "Completed". For example, you can use an xls:if instruction to test for
successful payment prior to executing the other instructions. Please see Payment Gateway Response Code Types
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/payment-gateway-response-code-
types/rvdwkpvm/section) for more information.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/understanding-payment-risk/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/payment-gateway-response-code-types/rvdwkpvm/section

Page action
You can add a product to wish list, cart or checkout immediately by triggering an action over URL using the following query
string name value pair on any page where the Product Detail module control is hosted. This is useful if, for example, you
need to create a hyperlink that immediately sends the customer to checkout.

Tell search bots not to index this link by adding the rel="nofollow" attribute to your anchor.

Name Value Required Description

rvdspact

1 Yes Perform “Add to Cart” action.

2 Yes Perform “Buy Now” action.

3 Yes Perform “Add to wish list” action.

rvdsfpvqty
A valid quantity value No The product quantity to add. If not

specified, the default quantity for the
product will be used.

rvdsfpid A valid product ID Yes The ProductID of the product.

rvdsfpvid

A valid product variant ID No The ProductVariantID of the product
variant to add. If not specified, the
default product variant will be triggered
by the action.

rvdsfbkstartdate
A valid start date for a
booking product.

No The booking start date and time
expressed according to the portal time
zone.

rvdsfbkstopdate
A valid stop date for a
booking product.

No The booking stop date and time
expressed according to the portal time
zone.

rvdsfdfr

Dynamic form result for
custom fields.

Agree=true&Name=John

No The dynamic form result is a set of
values used to populate the custom
fields for a product or variant. Individual
set of values should be delimited using
the querystring format and escaped as
needed.

rvdsfppartids

List of ProductPartID

13|89|56

No List of ProductPartID separated by the
pipe "|" delimiter used to indicate the
product parts participating in a bundled
product.

rvdsfppartsels

True/false (1/0) to indicate
which respective product
part is selected.

1|0|1

No List of boolean values separated by the
pipe "|" delimiter to indicate which
participating product part is selected in a
bundled product. To use the default
selection, leave the value empty for that
respective product part.

rvdsfppartqtys

The quantity number for
the respective product
part.

1||2

No List of integers separated by the pipe
"|"delimited to indicate the quantity set
for the participating product part in a
bundled product. To use a default
quantity, leave the value empty for that
respective product part.

returnurl

Any URL No Redirect user back to the specified URL
after adding a product to cart or to a
wish list. You can use this parameter to
add multiple products by chaining the
different URLs together.

rvdsfrcart
1 No Reset shopping cart to empty before

adding product to cart.

Examples
Below are several examples you may find helpful.

1. To add a single product to cart with a quantity of 1:

2. To reset the cart before adding a single product with a quantity of 2:

3. To add a single specific variant with a quantity of 5:

4. You can also pass the parameters using normal querystring if your site is not configured with friendly URL:

5. To add a single product and populate the custom fields (dynamic form), you need to pass the name & value pairs
through the rvdsfdfr parameter. Suppose you created 2 custom fields for your product with the IDs "MyPrice" and
"MyDesc".

You start by crafting your custom fields parameters as if it's a querystring:

Then you encode it (http://www.revindex.com/Resources/Tools/URLEncoderDecoder.aspx) and append it to
the rvdsfdfr parameter so you end up with a URL like this:

6. To add multiple products, you can chain a new URL using the returnurl parameter. You can chain as many URLs as
you like (up to the limitation of your browser, usually 2000 characters). You must remember to encode the URL
(http://www.revindex.com/Resources/Tools/URLEncoderDecoder.aspx) that you're chaining to so that any special
characters don't conflict. If you're chaining multiple URLs, you need encode over the previously encoded URL (even
if it's already encoded).

 http://a.com/product/tabid/138/rvdsfpid/product-1/rvdspact/1/rvdsfpvqty/1/default.aspx

 http://a.com/product/tabid/138/rvdsfpid/product-1/rvdspact/1/rvdsfpvqty/2/rvdsfrcart/1/default.aspx

 http://a.com/product/tabid/138/rvdsfpid/product-1/rvdspact/1/rvdsfpvqty/5/rvdsfpvid/3/default.aspx

 http://a.com/default.aspx?tabid=138&rvdsfpid=1&rvdspact=1&rvdsfpvqty=1&rvdsfpvid=3

 MyPrice=10.00&MyDesc=Hello

 http://a.com/default.aspx?
tabid=138&rvdsfpid=1&rvdspact=1&rvdsfpvqty=1&rvdsfpvid=3&rvdsfdfr=MyPrice%3D10.00%26MyDesc%3DHello

1

1

1

1

1

1

http://www.revindex.com/Resources/Tools/URLEncoderDecoder.aspx
http://www.revindex.com/Resources/Tools/URLEncoderDecoder.aspx

 http://a.com/default.aspx?
tabid=138&rvdsfpid=1&rvdspact=1&rvdsfpvqty=1&rvdsfpvid=3&returnurl=http%3A%2F%2Fa.com%2Fdefault.aspx%3Ftabid%3
D138%26rvdsfpid%3D2%26rvdspact%3D1%26rvdsfpvqty%3D1

1

Import and Export
The Storefront has a powerful import and export capability allowing you to bulk create almost every type of catalog and
sales objects (category, manufacturer, product, variant, voucher, etc.).

You can even export out data to a friendly CSV file that you can then edit using Excel or Notepad and import back into the
Storefront to perform bulk updates or deletes.

Overview
The import procedure accepts delimited data files (CSV delimited using either a comma, pipe, tab or semicolon) that
matches the specification in the map file. The first row must contain the header row with the column names. The actual
column ordering may vary. It’s recommended to enclose all column data in double quotes (e.g. "Apple iPad" or "149.99") to
escape any delimiter characters present in the text.

CSV files are processed row by row from top to bottom. For new insertions, if you have any parent child dependency, you
should ensure the parent's row appears before the child's row. The row sequence is not needed for updates or deletes. For
example, the "Laptop" category has a parent category called "Computers". If you're inserting both categories at once, the
"Computers" row should appear before the "Laptop" row. Similarly, you cannot insert product variants if the product does
not yet exist since product variant has a dependency on the product.

Map File

The import routine uses a mapping file to determine the delimiter character and map the actual property name with your
column name. In addition, the mapping file can accept default values for insertions. The map file is a simple XML that you
can edit to suit your purpose.

You should not delete any lines from the map file. Instead you can modify the attribute values according to the notes
below:

The delimiter attribute specifies the character delimiter to use. This should be a single character normally a comma,
semi-colon, pipe or tab.

The name attribute is the entity property name and should not be changed.

The col attribute should match your actual column name in your CSV file.

The default value is the value that should be used for insertion if the data column is not present in your CSV file.

Action

The actual type of operation performed by the import routine depends on the action specified in the Act column (Insert,
Update, Delete). If the Act column is not provided, the system will use the default action specified in the map file. In your
CSV file, you can have a few rows that insert, followed by other rows that update or delete as long as those actions are
allowed by that entity type. See each entity type for the available actions.

Columns

Most of the columns map directly to the same fields you find the Storefront admin interface. Therefore, it's good idea to
start by creating a few sample entries in your Storefront to understand how the data is being used and export out the file to
see what the actual data looks like

<map delimiter=",">
 <prop name="Act" col="Act" default="u" />
 <prop name="ProductID" col="ProductID" />
 <prop name="Published" col="Published" default="True" />
 ...
</map>

1
2
3
4
5
6
7

For insert actions, your import file should include all the columns. If a column is not provided, it will use the default value in
the map file, if available.

For update actions, you need to provide the object identifier or the object key if available. If a data column is not provided,
the property value of the object in question will be unchanged where it makes sense.

For delete actions, you need to provide the object identifier or the object key if available.

Object Identifier and Keys

When inserting new data, you can leave the database object identifier blank (e.g. ProductID) as it will be automatically
generated by your database. However, when you perform an update or delete action, you need to make sure the database
object identifier or key is specified. It is good practice to always export and use the latest data before updating because the
data may have changed by another user from the Storefront adminstration page or automatically changed by the system
(e.g. the product variant inventory count may have decreased from customer purchases).

Object keys are available for many entities such as category, product, manufacturer, etc. that you can use in place of
object identifiers to reference related objects by their unique key rather than with the database generated object identifier.
For example, you can name your product key "apple-ipad" to make it easier to recall when you need import product
categories rather than referencing by its identifier number "831". To display the object keys in the merchant interface, you
must first enable the Show object key feature under Configuration > General.

Language Localization

If your site operates in multiple languages, the data exported out or being imported into depends on the currently viewed
page language. For example, if you're browsing your site in English (United States), any localizable string value in the CSV
file will be treated in the en-US locale. If you later switch over to French (France), any localizable string value in the CSV
file will be treated in the fr-FR locale.

Validating Errors

During import, when possible, the Storefront will perform a series of validation row by row and will automatically rollback
the entire data changes if any incorrect data is detected to protect the integrity of your system. Even with the automatic
validation and transaction rollback, we still recommend that you perform a complete backup of your system before
performing any import.

Limitations

Please note that Web applications are limited by network, CPU and allowed memory consumption. When importing large
amount of data, it is recommended to run multiple smaller imports (e.g. import 10,000 records at a time instead of 100,000
records at once).

Google Spreadsheets

We recommend using Google sheets (https://docs.google.com/spreadsheets) to edit your CSV file. It's free and is hosted
online with nothing to install. Once you're done editing, you can download it back as CSV file.

1. Start a blank spreadsheet.

2. Click on File > Import.

3. Choose the Upload tab and select the file from your computer.

https://docs.google.com/spreadsheets

4. Set the Separator character = comma

5. Set the Convert text to numbers and date = No

6. Click Import.

Microsoft Excel

In most cases, you can simply double click the CSV file you exported to open it in Excel for editing. Please note, however,
that Excel by default will attempt to convert numbers into its own native format. This may present a problem for fields like
SKU that is normally a text field. For example, if your SKU values consist of only long numbers such as "12231231243",
Excel will convert it to a number format and it will end up showing on your screen as "1.22E+10". The proper way to open a
CSV file is to start with a blank Excel spreadsheet and perform a data import.

1. Open a new blank spreadsheet.

2. Under the Excel's Data tab, click on the From Text button

3. Select your CSV file to import

4. Choose Delimited file type and Start Import at row = 1 and File origin = Unicode (UTF-8). Click Next.

5. Select Comma as your only delimiter (deselect other delimiter types) and Text qualifier = " (double-quote) and click
Next.

6. In the Data preview, use the SHIFT key to select all columns and set the Column data format = Text.

7. Click Finish on the next screen.

8. Place the imported data on your first cell.

Data Types
The import/export uses the following data type convention in order to correctly return and consume the import file.

Data
Type

Description Valid Values

Boolean A logical boolean. "True" or "False" (without the quotes)

Byte A Base64 encoded string of the byte array data. YTM0NZomIzI2OTsmIzM0NTueYQ==

DateTime A valid date with time component. 2001-01-01T12:00:00

Decimal A numeric value that can contain a decimal point (x.xx) 12.49

Double A numeric value that can contain decimal point (x.xx) 3289.3243

GUID Globally unique identifier.
4F43B5CD-6817-4a64-9B32-
640076F2A3A6

Integer A 32-bit numeric value without decimals. 12345

Long A 64-bit numeric value without decimals. 432432483244

String Any text value. "Hello world" (without the quotes)

TimeSpan A valid time component. 22:00:00

XML XML data. Any valid XML data.

XML
Code

XML data containing a "code" element with a "version" and
"type" attribute. The enclosed value is the actual formula.

<code version="1.0"
type="aspnetmarkup">...</code>

XML
Locale

XML element named "locale" with any number of culture codes
as attributes to hold the localized string.

<locale en-US="Hello" fr-
FR="Bonjour" />

XML Rule
XML data containing a "rule" element with a "version" and
"type" attribute. The enclosed value is the actual formula.

<rule version="1.0" type="xslt">...
</rule>

Entities
The Storefront supports importing and exporting most of the catalog entities and some sales order entities allowing you to
bulk insert, update and delete data to many aspects of your store quickly and easily. Please note certain entities cannot
perform update actions, but can achieve similar results using delete, followed by a new insert action.

Category
To import/export categories, go to Catalog > Categories from the Storefront module menu. Click on the Import or Export
link.

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform (Insert = i,
Update = u, Delete = d)

u

CategoryID Integer Yes/No
Database object identifier. This value is
required when performing an update or delete
action if the CategoryKey is not provided.

12

CategoryKey String Yes/No

A unique key that can be used to uniquely
identify this object. This could be a short
meaningful text or simply a GUID. If you don't
specify a value, the system will generate a
unique key for you during insertion. This key
can be used to lookup the object if the
ProductCategoryID is not specified.

business-finance

AvailabilityRule XML Rule No
The rule to describe the conditions when the
category can be shown.

CreateDate DateTime No

Description String No Category description.
Buy the latest
books

DisplayOrder Integer Yes
Sort display order from smallest to largest
number.

1000

DisplayTemplate String No Custom display template name. Custom12

Extension XML No Extra data in XML string.
<data>
<misc>True</misc>
</data>

MetaDescription String No Meta description.
Popular books,
magazines

MetaKeywords String No Meta keywords. Books, magazines

Name String Yes Category name. Books

PageTitle String No Page title. Popular books

ParentCategoryID Integer No

For sub-category, reference to a parent object
by its CategoryID. If you specify
ParentCategoryID, the ParentCategoryKey will
be ignored.

10

ParentCategoryKey String No

For sub-category, reference to a parent object
by its CategoryKey instead of its CategoryID.
If you specify ParentCategoryID, the
ParentCategoryKey will be ignored.

business

Published Boolean Yes Enable display of the category. True

UrlName String No Name to appear in URL for SEO purposes. Popular books

UpdateDate DateTime No

Distributor
To import/export distributors, go to Catalog > Distributors from the Storefront module menu. Click on the Import or
Export link.

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform (Insert = i,
Update = u, Delete = d)

u

DistributorID Integer Yes/No
Database object identifier. This value is required
when performing an update or delete action if the
DistributorKey is not provided.

12

DistributorKey String Yes/No

A unique key that can be used to uniquely identify
this object. This could be a short meaningful text
or simply a GUID. If you don't specify a value, the
system will generate a unique key for you during
insertion. This key can be used to lookup the
object if the DistributorID is not specified.

allied

CreateDate DateTime No

Description String No Short description.

DisplayOrder Integer Yes
Sort display order from smallest to largest
number.

1000

DisplayTemplate String No Custom display template name. Custom12

Email String No

Extension XML No Extra data in XML string.
<data>
<misc>True</misc>
</data>

MetaDescription String No Meta description.
Popular books,
magazines

MetaKeywords String No Meta keywords. Books, magazines

Name String Yes Distributor name. Allied

PageTitle String No Page title.

Phone String No

Published Boolean Yes Enable display of the category. True

UpdateDate DateTime No

Gallery
To import/export gallery images, go to Catalog > Products from the Storefront module menu. Click on the Import or
Export link. Then select "Gallery". You must first upload the physical image files to a temporary staging folder under your
portal root before starting the import procedure. After running the import, you can remove the image files you had uploaded
to the temporary folder.

Column Type
Data
required

Description Example

Act String Yes Type of import action to perform (Insert = i, Delete = d) i

GalleryID Integer Yes/No
Database object identifier. Only this value is required
when performing a delete action.

9

AlternateText String No SEO alternate text for the image.
Popular
mechanics.

CategoryID Integer Yes/No
Associate this gallery to the Category object by its
CategoryID. If you specify the CategoryID, the
CategoryKey will be ignored.

CategoryKey String Yes/No
Associate this gallery to the Category object by its
CategoryKey. If you specify the CategoryID, the
CategoryKey will be ignored.

CreateDate DateTime No

DisplayOrder Integer Yes Gallery sort order from smallest to largest number. 1000

Format Integer Yes Detailed = 1, Display = 2, Thumbnail = 3 2

ProductID Integer Yes/No
Associate this gallery to a product by its ProductID. If
you specify ProductID, the ProductKey will be ignored.

1

ProductKey String Yes/No
Associate this gallery to a product by its ProductKey. If
you specify ProductID, the ProductKey will be ignored.

ProductVariantID Integer Yes/No
Associate this gallery to a product variant by its
ProductVariantID. If you specify ProductVariantID, the
ProductVariantKey will be ignored.

1

ProductVariantKey String Yes/No
Associate this gallery to a product variant by its
ProductVariantKey. If you specify ProductVariantID, the
ProductVariantKey will be ignored.

StageMediaFile String Yes
The file path of the image is relative to the portal root.
Do not specify the path to the portals folder (e.g.
"portals\0\")

Temp\1.jpg

UpdateDate DateTime No

Manufacturer
To import/export manufacturer, go to Catalog > Manufacturers from the Storefront module menu. Click on the Import or
Export link.

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform (Insert = i,
Update = u, Delete = d)

u

ManufacturerID Integer Yes/No
Database object identifier. This value is required
when performing an update or delete action if the
ManufacturerKey is not provided.

12

ManufacturerKey String Yes/No

A unique key that can be used to uniquely
identify this object. This could be a short
meaningful text or simply a GUID. If you don't
specify a value, the system will generate a
unique key for you during insertion. This key can
be used to lookup the object if the
ManufacturerID is not specified.

toyota

CreateDate DateTime No

Description String No Short description.

DisplayOrder Integer Yes
Sort display order from smallest to largest
number.

1000

DisplayTemplate String No Custom display template name. Custom12

Email String No

Extension XML No Extra data in XML string.
<data>
<misc>True</misc>
</data>

MetaDescription String No Meta description.
Makes cars and
trucks

MetaKeywords String No Meta keywords. cars, suv, trucks

Name String Yes Manufacturer name. Toyota

PageTitle String No Page title.

Phone String No

Published Boolean Yes Enable display of the category. True

UpdateDate DateTime No

Product
To import/export products, go to Catalog > Products from the Storefront module menu. Click on the Import or Export link.
A product consists of at least one or more product variants; therefore, you should also import the product variant after you
are done.

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform (Insert = i,
Update = u, Delete = d)

u

ProductID Integer Yes/No
Database object identifier.This value is
required when performing an update or delete
action if the ProductKey is not provided.

12

ProductKey String Yes/No

A unique key that can be used to uniquely
identify this object. This could be a short
meaningful text or simply a GUID. If you don't
specify a value, the system will generate a
unique key for you during insertion. This key
can be used to lookup the object if the
ProductID is not specified.

apple-ipad

AllowInternetOrder Boolean Yes Allow purchase online. True

AllowPhoneOrder Boolean Yes Allow phone order. False

AllowProductReview Boolean Yes Allow customers to post reviews and ratings. True

AvailabilityRule XML Rule No
The rule to describe the conditions when the
product can be purchased.

BuyingGuide String No Buying guide text.

BuyingGuideName String No
Override default name for the buying guide
description.

CreateDate DateTime No

DisplayOrder Integer Yes
Product sort order from smallest to largest
number.

1000

DisplayTemplate String No Custom display template name. Custom12

DynamicFormCode
XML
Code

No Custom HTML or input form elements.

Extension XML No Extra data in XML string.
<data>
<misc>True</misc>
</data>

FAQ String No FAQ text.

FAQName String No
Override default name for the FAQ
description.

Featured Boolean Yes
Indicate if product is “featured” and should be
displayed on product list module control even
if no category is selected.

False

MetaDescription String No Meta description. Popular mechanics

MetaKeywords String No Meta keywords.
mechanics,
engineers

Name String Yes Product name. Popular Mechanics

Overview String No Overview text.

OverviewName String No
Override default name for the overview
description.

PageTitle String No Page title. Popular books

ProductDetailUrl String No

Specify a custom product detail page for this
product or set to empty or null to use the
default product detail page. Enter a valid Tab
ID number for the page.

ProductType Integer Yes Regular = 1 1

Published Boolean Yes Enable display of the product. True

RedirectUrl String No
Redirect product detail page to URL location.
Useful for maintaining SEO value for a
discontinued product.

SellerID Integer No Associate this product to a valid seller ID. 3

ShowAddToCart Boolean Yes True

ShowAddToWishList Boolean Yes True

ShowBuyNow Boolean Yes True

ShowInventory Boolean Yes True

ShowMSRP Boolean Yes True

ShowPrice Boolean Yes True

ShowQuantity Boolean Yes True

ShowRewardPoints Boolean Yes True

ShowSavings Boolean Yes True

ShowSeeDetails Boolean Yes True

ShowSKU Boolean Yes True

ShowSocialShare Boolean Yes True

ShowUpdate Boolean Yes True

Specifications String No Specifications text.

SpecificationsName String No
Override default name for the specifications
description.

StartDate DateTime No When to start publishing product. 2010-10-15

StopDate DateTime No When to stop publishing product. 2012-01-18

Summary String No Summary text.

Terms String No Terms text.

TermsName String No
Override default name for the terms
description.

UpdateDate DateTime No

UrlName String No Name to appear in URL for SEO purposes.
Popular mechanics
magazine

Product Attribute
To import/export product attributes, go to Catalog > Products from the Storefront module menu. Click on the Import or
Export link, then select "Product attribute" and upload the CSV file.

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform (Insert = i,
Update = u, Delete = d)

i

ProductAttributeID Integer Yes/No
Database object identifier. This value must be
specified when performing an update or delete
action.

9

BooleanValue Boolean No
Boolean type value. If you specify a value
here, you must not specify the DecimalValue,
IntegerValue, SelectionValue or StringValue.

True

CreateDate DateTime No

DecimalValue Decimal No
Decimal type value. If you specify a value
here, you must not specify the BooleanValue,
IntegerValue, SelectionValue or StringValue.

1.2

IntegerValue Integer No
Integer type value. If you specify a value here,
you must not specify the BooleanValue,
DecimalValue, SelectionValue or StringValue.

2

ProductAttributeDefinitionID Integer Yes/No

Associate this attribute to the Product Attribute
Definition by its ProductAttributeDefinitionID. If
you specify ProductAttributeDefinitionID, the
ProductAttributeDefinitionKey will be ignored.

1

ProductAttributeDefinitionKey String Yes/No

Associate this attribute to the Product Attribute
Definition by its ProductAttributeDefinitionKey.
If you specify ProductAttributeDefinitionID, the
ProductAttributeDefinitionKey will be ignored.

ProductID Integer Yes/No

Associate this attribute to the product by its
ProductID. If you specify ProductID, the
ProductKey will be ignored. If you specify the
ProductID, you must not specify the
ProductVariantID or ProductVariantKey.

12

ProductKey String Yes/No

Associate this attribute to the product by its
ProductKey. If you specify ProductID, the
ProductKey will be ignored. If you specify the
ProductID, you must not specify the
ProductVariantID or ProductVariantKey.

apple

ProductVariantID Integer Yes/No

Associate this attribute to the product variant
by its ProductVariantID. If you specify
ProductVariantID, the ProductVariantKey will
be ignored. If you specify the
ProductVariantID, you must not specify the
ProductID.

14

ProductVariantKey String Yes/No

Associate this attribute to the product variant
by its ProductVariantKey. If you specify
ProductVariantID, the ProductVariantKey will
be ignored. If you specify the
ProductVariantID, you must not specify the
ProductID.

apple-
ipad-
white

SelectionValue String No

Pipe delimited list of integer selection values.
Value must correspond to the possible
ProductAttributeDefinitionSelectionID values.
If you specify a value here, you must not
specify the BooleanValue, DecimalValue,
IntegerValue or StringValue.

12|32|1

StringValue String No

Localized string type value. If you specify a
value here, you must not specify the
BooleanValue, DecimalValue, IntegerValue or
SelectionValue.

UpdateDate DateTime No

Product Attribute Definition
To export product attribute definitions, go to Catalog > Attribute definitions from the Storefront module menu. Click on
the Export link.

Column Type
Data
required

Description Example

Act String No No import action supported at the moment.

ProductAttributeDefinitionID Integer Yes/No Database object identifier. 45

ProductAttributeDefinitionKey String Yes/No
A unique key that can be used to uniquely
identify this object. This could be a short
meaningful text or simply a GUID.

color

Comparable Boolean Yes
Determines if this attribute type can be used
for product comparison.

True

CreateDate DateTime No

Description String No Localized description.

DisplayOrder Integer Yes Sort display order. 1000

Filterable Boolean Yes Product list can filter by this attribute type. False

HelpText String No Help displayed in tooltip.

Name String Yes Localized name. Color

ProductAttributeGroupID Integer No
Associate this attribute to a product attribute
group by its ProductAttributeGroupID.

ProductAttributeType Integer Yes
Boolean = 1,Integer = 2, Decimal = 3, String =
4, Selection = 5

3

Published Boolean Yes True

Searchable Boolean Yes Product search can index this attribute. False

StepSize Decimal Yes
The incremental change for decimal attribute
type input.

1.0

UpdateDate DateTime No

Product Attribute Group
To export product attribute groups, go to Catalog > Attribute groups from the Storefront module menu. Click on the
Export link.

Column Type Data required Description Example

Act String No No import action supported at the moment.

ProductAttributeGroupID Integer Yes/No Database object identifier. 45

CreateDate DateTime No

Description String No Localized description.

DisplayOrder Integer Yes Sort display order. 1000

Name String Yes Localized name. Color

UpdateDate DateTime No

Product Category
The product category is the relationship that determines which product is associated to which category. To import/export
product categories, go to Catalog > Products from the Storefront module menu. Click on the Import or Export link. Then
select "Product category".

Column Type
Data
required

Description Example

Act String Yes Type of import action to perform (Insert = i, Delete = d) i

ProductCategoryID Integer Yes/No
Database object identifier. This value must be specified
when performing a delete action.

9

CategoryID Integer Yes/No
Associate the category object by its CategoryID. If you
specify CategoryID, the CategoryKey will be ignored.

4

CategoryKey String Yes/No
Associate the category object by its CategoryKey. If you
specify CategoryID, the CategoryKey will be ignored.

business

CreateDate DateTime No

DefaultCategory Boolean Yes

Specify if this is the default category association for this
product. The default category is shown on the
breadcrumb if customer arrived on the product detail
page without selecting a category, manufacturer,
distributor or coming from a search.

False

ProductID Integer Yes/No
Associate the product object by its ProductID. If you
specify ProductID, the ProductKey will be ignored.

12

ProductKey String Yes/No
Associate the product object by its ProductKey. If you
specify ProductID, the ProductKey will be ignored.

apple

Product Component
To export product components, go to Catalog > Products from the Storefront module menu. Click on the Export link.
Select Export from "Product component".

Column Type
Data
required

Description Example

Act String No
Type of import action to perform (Insert = i, Update =
u, Delete = d)

i

ProductComponentID Integer Yes/No
Database object identifier. This value is required
when performing an update or delete action if the
ProductComponentKey is not provided.

38

ProductComponentKey String Yes/No

A unique key that can be used to uniquely identify
this object. This could be a short meaningful text or
simply a GUID. If you don't specify a value, the
system will generate a unique key for you during
insertion. This key can be used to lookup the object if
the ProductComponentID is not specified.

apple-
bundled

ComponentType Integer Yes
Specify the type of component

Implicit = 1, Explicit = 2, Multiple = 3, Single = 4

1

CreateDate DateTime No

DisplayOrder Integer Yes Sort display order. 1000

Name String Yes

ProductVariantID Integer Yes/No

Associate this component to the product variant by
its ProductVariantID. If you specify ProductVariantID,
the ProductVariantKey will be ignored. If you specify
the ProductVariantID, you must not specify the
ProductID.

12

ProductVariantKey String Yes/No

Associate this component to the product variant by
its ProductVariantKey. If you specify
ProductVariantID, the ProductVariantKey will be
ignored. If you specify the ProductVariantID, you
must not specify the ProductID.

UpdateDate DateTime No

Product Part
To export product parts, go to Catalog > Products from the Storefront module menu. Click on the Export link. Select
Export from "Product part".

Column Type
Data
required

Description Example

Act String No
Type of import action to perform (Insert = i, Update =
u, Delete = d)

i

ProductPartID Integer Yes/No
Database object identifier. This value is required
when performing an update or delete action.

38

CreateDate DateTime No

DefaultQuantity Integer Yes The default quantity for the product part. 1

DisplayOrder Integer Yes Sort display order. 1000

MaxOrderQuantity Integer No
The maximum quantity for this product part that can
be ordered in the bundle.

MinOrderQuantity Integer No
The minimum quantity for this product part that can
be ordered in the bundle.

ModifierRule XML Rule No Product part modifier rule.

ProductComponentID Integer Yes/No

Reference the corresponding product component by
its ProductComponentID. If you specify
ProductComponentID, the ProductComponentKey
will be ignored.

35

ProductComponentKey String Yes/No

Reference the corresponding product component by
its ProductComponentKey. If you specify
ProductComponentID, the ProductComponentKey
will be ignored.

ProductVariantID Integer Yes/No

Associate this product part to the product variant by
its ProductVariantID. If you specify ProductVariantID,
the ProductVariantKey will be ignored. If you specify
the ProductVariantID, you must not specify the
ProductID.

75

ProductVariantKey String Yes/No

Associate this component to the product variant by
its ProductVariantKey. If you specify
ProductVariantID, the ProductVariantKey will be
ignored. If you specify the ProductVariantID, you
must not specify the ProductID.

Selected Boolean Yes
Specify if this product part is selected by default and
participate in the bundled product.

True

ShowPrice Boolean Yes
Specify if the price of the product part is shown to
the customer.

True

ShowQuantity Boolean Yes Specify if the customer is allowed to edit the quantity. False

UpdateDate DateTime No

Product Review
To export product reviews, go to Catalog > Products from the Storefront module menu. Click on the Export link. Then
select "Product review".

Column Type
Data
required

Description Example

Act String No No import action supported at the moment.

ProductReviewID Integer Yes/No Database object identifier. 45

Approved Boolean Yes True

Comment String No

CreateDate DateTime No

Email String No

FirstName String No

LastName String No

OverallRating Integer Yes Rating between 1 to 5. 5

ProductID Integer Yes/No
Associate the product by its ProductID. If you specify
ProductID, the ProductKey will be ignored.

3

ProductKey String Yes/No
Associate the product by its ProductKey. If you specify
ProductID, the ProductKey will be ignored.

apple-
ipad

Title String No

UpdateDate DateTime No

UserHostAddress String No IP address of the user.

UserID Integer No
Associate the user by its UserID. If anonymous user, leave
blank.

234

Product Variant
To import/export product variants, go to Catalog > Products from the Storefront module menu. Click on the Import or
Export link. Then select "Product variant".

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform
(Insert = i, Update = u, Delete = d)

u

ProductVariantID Integer Yes/No

Database object identifier. This value
is required when performing an
update or delete action if the
ProductVariantKey is not provided.

12

ProductVariantKey String Yes/No

A unique key that can be used to
uniquely identify this object. This
could be a short meaningful text or
simply a GUID. If you don't specify a
value, the system will generate a
unique key for you during insertion.
This key can be used to lookup the
object if the ProductVariantID is not
specified.

apple-ipad-white

AllowableOrderQuantity String No

The distinct quantities you want to
allow, separated by a pipe "|"
delimiter. Use a dash to denote a
range of quantities. For example, if
you enter "1|3|5-7|9" in the text box,
only quantities 1, 3, 5, 6, 7 and 9 will
be allowed.

1|3|5-7|9

AllowProductComparison Boolean Yes
Allow product to be compared with
others.

True

AllowRecurringGroupOrders Boolean Yes
Allow this variant to be grouped
together with other similar orders if
this variant is due for recurring.

True

AllowRewardsPoint Boolean Yes
Allow this variant to participate in
rewards point program.

True

AvailabilityRule XML Rule No
The rule to describe the conditions
when the product can be purchased.

BasePrice Decimal Yes Product base price. 15.00

BookingRule XML Rule No
The rule to describe booking
conditions such as exclusion dates.

BuyingGuide String No Buying guide text.

BuyingGuideName String No
Override default name for the buying
guide description.

CreateDate DateTime No

Depth Decimal Yes
Product depth in cm. Enter zero if not
used.

15.5

DisplayOrder Integer Yes
Product sort order from smallest to
largest number.

1000

DistributorID Integer No

Associate this variant to a distributor
by its DistributorID. If you specify
DistributorID, the DistributorKey will
be ignored.

9

DistributorKey String No

Associate this variant to a distributor
by its DistributorKey. If you specify
DistributorID, the DistributorKey will
be ignored.

allied

DistributorSKU String No Distributor SKU number.

DownloadFile String No
The URL, file or page associated to
the product.

DynamicFormCode
XML
Code

No
Custom HTML or input form
elements.

Extension XML No Extra data in XML string.
<data>
<misc>True</misc>
</data>

FAQ String No FAQ text.

FAQName String No
Override default name for the FAQ
description.

HandlingPrice Decimal Yes
The handling price to charge if
handling rule uses it.

0.00

Height Decimal Yes
Product height in cm. Enter zero if
not used.

10

Inventory Integer No Inventory level. 2000

InventoryEmptyBehavior

Integer

Yes

How product behaves when inventory
is empty.

DisallowOrder = 1
DisableProduct = 2
AllowBackorder = 3

1

InventoryUnitType Integer Yes

Indicate how inventory is treated
especially in the case of a booking
product. For regular product, the unit
type should be Constant.

Constant = 1
Year = 2
Month = 3
Week = 4
Day = 5
Hour = 6

1

ManufacturerID Integer No

Associate this variant to a
manufacturer by its ManufacturerID.
If you specify ManufacturerID, the
ManufacturerKey will be ignored.

3

ManufacturerKey String No

Associate this variant to a
manufacturer by its ManufacturerKey.
If you specify ManufacturerID, the
ManufacturerKey will be ignored.

ManufacturerSKU String No Manufacturer SKU number.

MaxBookingDate DateTime No

MaxBookingTime TimeSpan No

MaxInventory Integer No The desirable max inventory to keep.

MaxOrderQuantity Integer No Maximum order quantity. 10

MaxOrderUnit Integer No
Maximum reservable units for a
booking product.

5

MinOrderUnit Integer No
Minimum reservable units for a
booking product.

3

MetaDescription String No Localized meta description.

MetaKeywords String No Localized meta keywords.

MinBookingDate DateTime No

MinBookingTime TimeSpan No

MinInventory Integer No The desirable min inventory to keep.

MinOrderQuantity Integer No Minimum order quantity. 1

MinOrderUnit Integer No
Minimum reservable units for a
booking product.

1

ModifierRule XML Rule No Product modifer rule.

MSRP Decimal No Manufacturer suggested retail price. 25.00

Name String Yes Product variant name.
Best of Popular
Mechanics

Overview String No Overview text.

OverviewName String No
Override default name for the
overview description.

PackageType Integer Yes
Shipping package type used for
shipping calculation.

2000

PageTitle String No Localized page title.

PreorderInterval Integer Yes
The days to preorder a recurring
order ahead of time.

0

PriceText String No
Any text specified here will be shown
to the customer instead of the actual
price.

Call for price

ProductCost Decimal No Cost of product. 8.00

ProductID Integer Yes/No

Reference the corresponding product
by its ProductID. If you specify
ProductID, the ProductKey will be
ignored.

1

ProductKey String Yes/No

Reference the corresponding product
by its ProductKey. If you specify
ProductID, the ProductKey will be
ignored.

apple-ipad

PromotionRule XML Rule No Product promotion rule.

PromotionStartDate DateTime No Product promotion start date.

PromotionStopDate DateTime No Product promotion stop date.

Published Boolean Yes Enable display of the product. True

RecurringInterval Integer Yes
The recurring repeat interval for the
RecurringIntervalType. Enter zero for
non-recurring.

12

RecurringIntervalType Integer Yes

Day = 1

Week = 2

Month = 3

Year = 4

3

RecurringMaxRepeat Integer No
The number of times to repeat the
recurring order or leave blank to
repeat perpetually.

1

RecurringMinRepeat Integer No

The minimum number of times that
must be repeated before allowing
customers from cancelling future
recurring orders.

11

RequireHandling Boolean Yes Product requires handling. True

RequireShipping Boolean Yes Product requires shipping. True

RewardPoints Integer No

The custom number of rewards
points to award. Leave empty if
awarding the default number of
points based on the selling price.

10

RightDefinitionID Integer No
If this value is set, the customer will
be issued the access rights when
order is paid or completed.

SalesType Integer Yes

Determine if product can be
purchased at the listed price or must
be quoted first.

Sale = 1
Quoted = 2

ShippingCode String No

Shipping code may be used by your
shipping provider to classify this
package to obtain a more accurate
quote.

ShippingPrice Decimal Yes
The shipping price to charge if
shipping rule uses it.

0.00

SKU String No Product SKU RVD1000.V1

Specifications String No Specifications text.

SpecificationsName String No
Override default name for the
specifications description.

StartDate DateTime No When to start publishing product. 2010-10-15

StartRecurringDate DateTime No
Initialize a different recurring start
date by interval amount.

StartRecurringInterval Integer Yes
Initialize a different recurring start
date by interval amount.

0

StartRecurringIntervalType Integer Yes
The interval type (Day = 1, Week = 2,
Month = 3, Year = 4).

1

StopDate DateTime No When to stop publishing product. 2012-01-18

Summary String No Summary text.

TaxClassID Integer No
Product tax class. Database tax class
ID.

3

Terms String No Terms text.

TermsName String No
Override default name for the terms
description.

UniversalProductCode String No Universal product code.

UpdateDate DateTime No

UrlName String No Localized URL name for SEO.

VoucherDefinitionID Integer No

If this value is set, a new voucher of
this type will be automatically
generated and emailed to customer
when order is paid or completed.

WarehouseID Integer No

Indicate if this product in kept at a
specific warehouse. Reference the
warehouse by its WarehouseID. If the
WarehouseID is specified, the
WarehouseKey is ignored.

8

WarehouseKey String No

Indicate if this product in kept at a
specific warehouse. Reference the
warehouse by its WarehouseKey. If
the WarehouseID is specified, the
WarehouseKey is ignored.

Weight Decimal Yes
Product weight in gram. Enter zero if
not used.

100

Width Decimal Yes
Product width in cm. Enter zero if not
used.

10.2

Product Variant Group
The product variant group allows you to regroup the different options available for your variants. To import/export product
variant groups, go to Catalog > Products from the Storefront module menu. Click on the Import or Export link. Then
select "Product variant group".

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform (Insert = i, Update
= u, Delete = d)

i

ProductVariantGroupID Integer Yes/No
Database object identifier. This value is required
when performing an update or delete action if the
ProductVariantGroupKey is not provided.

9

ProductVariantGroupKey String Yes/No

A unique key that can be used to uniquely identify
this object. This could be a short meaningful text or
simply a GUID. If you don't specify a value, the
system will generate a unique key for you during
insertion. This key can be used to lookup the
object if the ProductVariantGroupID is not
specified.

apple-
ipad-
colors

CreateDate DateTime No

DisplayOrder Integer Yes Sort order for display. 1000

FieldType Integer Yes
The type of control to display. DropDownList = 1,
RadioButtonList = 2, ColorPicker = 3,
ImageSwatch = 4

2

HelpText String No Localized help text.

Name String Yes Localized name.

ProductID Integer Yes/No
Associate the product object by its ProductID. If
you specify ProductID, the ProductKey will be
ignored.

12

ProductKey String Yes/No
Associate the product object by its ProductKey. If
you specify ProductID, the ProductKey will be
ignored.

apple

UpdateDate DateTime No

Product Variant Group Option
The product variant group options are the individual selections (e.g. red, blue, green) that make up a product variant group
(e.g. colors). To import/export product variant group options, go to Catalog > Products from the Storefront module menu.
Click on the Import or Export link. Then select "Product variant group option".

The image file is needed if field type is an ImageSwatch. The file path of the image is relative to the portal root. Do not
specify the path to the portals folder (e.g. "portals\0\")

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform (Insert = i,
Update = u, Delete = d)

i

ProductVariantGroupOptionID Integer Yes/No

Database object identifier. This value is
required when performing an update or
delete action if the
ProductVariantGroupOptionKey is not
provided.

16

ProductVariantGroupOptionKey String Yes/No

A unique key that can be used to uniquely
identify this object. This could be a short
meaningful text or simply a GUID. If you
don't specify a value, the system will
generate a unique key for you during
insertion. This key can be used to lookup
the object if the
ProductVariantGroupOptionID is not
specified.

apple-
ipad-
colors-blue

ColorCode String Yes/No
The color code used if this group option is
a color swatch type.

#FCFCFC

CreateDate DateTime No

DisplayOrder Integer Yes Sort order for display. 1000

Name String Yes Localized name.

ProductVariantGroupID Integer Yes/No

Associate the product variant group object
by its ProductVariantGroupID. If you
specify ProductVariantGroupID, the
ProductVariantGroupKey will be ignored.

12

ProductVariantGroupKey String Yes/No

Associate the product object by its
ProductVariantGroupKey. If you specify
ProductVariantGroupID, the
ProductVariantGroupKey will be ignored.

apple

StageImageFile String Yes/No

The image file is needed if the
ProductVariantGroup Field type specifies
an ImageSwatch type. The file path of the
image is relative to the portal root. Do not
specify the path to the portals folder (e.g.
"portals\0\")

Temp\1.jpg

UpdateDate DateTime No

Product Variant Option
The product variant options is the relationship between the product variant and the product variant group option (e.g. blue).
To import/export product variant options, go to Catalog > Products from the Storefront module menu. Click on the Import
or Export link. Then select "Product variant option".

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform (Insert = i,
Update = u, Delete = d)

i

ProductVariantOptionID Integer Yes/No
Database object identifier. This value is
required when performing an update or
delete action.

CreateDate DateTime No

ProductVariantGroupOptionID Integer Yes/No

Associate the product variant group option
object by its ProductVariantGroupOptionID.
If you specify
ProductVariantGroupOptionID, the
ProductVariantGroupOptionKey will be
ignored.

16

ProductVariantGroupOptionKey String Yes/No

Associate the product variant group option
object by its
ProductVariantGroupOptionKey. If you
specify ProductVariantGroupOptionID, the
ProductVariantGroupOptionKey will be
ignored.

apple-
ipad-
colors-
blue

ProductVariantID Integer Yes/No

Associate the product variant object by its
ProductVariantID. If you specify
ProductVariantID, the ProductVariantKey
will be ignored.

14

ProductVariantKey String Yes/No

Associate the product variant object by its
ProductVariantKey. If you specify
ProductVariantID, the ProductVariantKey
will be ignored.

apple-
ipad-
white

UpdateDate DateTime No

Recurring Sales Order
To export recurring sales orders, go to Sales > Recurring orders from the Storefront module menu. Click on the Export
link.

Column Type
Data
required

Description Example

Act String No No import action supported at the moment.

RecurringSalesOrderID Integer Yes Database object identifier.

AdminNotes String No Notes visible to the store administrator only.

CreateDate DateTime No

CultureCode String Yes The culture code.

DynamicFormResult XML No The result collected from custom fields.

MaxRepeat Integer No
The number of times this recurring order is
allowed to repeat.

NextRecurringDate DateTime Yes The next recurring date.

OriginalSalesOrderID Integer No The associated SalesOrder.

ProductVariantID Integer Yes The ProductVariant object identifier.

Quantity Integer Yes

RepeatCount Integer Yes
The number of times this recurring order has
repeated.

SellerID Integer No Indicates if this object belongs to a seller.

ShippingCity String Yes

ShippingCompany String No

ShippingCountryCode String Yes

ShippingEmail String Yes

ShippingFirstName String Yes

ShippingLastName String Yes

ShippingMethodID Integer No ShippingMethod object identifier.

ShippingPhone String No

ShippingPostalCode String Yes

ShippingStreet String Yes

ShippingSubdivisionCode String Yes

Status Integer Yes
Recurring order status (Active = 1, Hold = 2,
Invalid = 3,
Cancelled = 4)

UpdateDate DateTime No

UserID Integer Yes UserID object identifier.

UserPaymentID Integer Yes UserPayment object identifier.

Related Product
To import/export related products, go to Catalog > Products from the Storefront module menu. Click on the Import or Export
link. Then select "Related product".

Column Type
Data
required

Description Example

Act String Yes Type of import action to perform (Insert = i, Delete = d) i

RelatedProductID Integer Yes/No
Database object identifier. This value must be specified
when performing a delete action.

CreateDate DateTime No

ProductID Integer Yes/No
Associate the product object by its ProductID. If you
specify ProductID, the ProductKey will be ignored.

16

ProductKey String Yes/No
Associate the product object by its ProductID. If you
specify ProductID, the ProductKey will be ignored.

apple-
ipad

RelationProductID Integer Yes/No
Associate the related product object by its ProductID. If
you specify ProductID, the ProductKey will be ignored.

14

RelationProductKey String Yes/No
Associate the related product object by its ProductKey.
If you specify ProductID, the ProductKey will be
ignored.

apple-
ipad-
white

Required Product
To import/export required products, go to Catalog > Products from the Storefront module menu. Click on the Import or Export
link. Then select "Required product".

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform (Insert = i,
Delete = d)

i

RequiredProductID Integer Yes/No
Database object identifier. This value must be
specified when performing a delete action.

CreateDate DateTime No

DeferDate DateTime No
Defer the start of the required product until the
date specified.

DeferInterval Integer Yes
Defer the start of the required product by the
amount of interval time. Enter zero to start
immediately.

0

DeferIntervalType Integer Yes
The interval type for the deferral. Day = 1,
Week = 2, Month = 3, Year = 4

1

ProductVariantID Integer Yes/No

Associate the product variant object by its
ProductVariantID. If you specify
ProductVariantID, the ProductVariantKey will be
ignored.

15

ProductVariantKey String Yes/No

Associate the product variant object by its
ProductVariantKey. If you specify
ProductVariantID, the ProductVariantKey will be
ignored.

apple-
ipad-
white

Published Boolean Yes
Determine if the required product is disclosed to
the customer.

True

Quantity Integer Yes

A non-zero value will match the quantity
ordered (e.g. if you set a value of 2 and the
customers places an order for 2 items, the total
required products will equal 4). Enter a value of
1 if you want to have a one to one match. If you
want a single required product regardless of
any number of items purchased, enter a value
of 0.

1

RequiredProductVariantID Integer Yes/No

Associate the required product variant object by
its ProductVariantID. If you specify
ProductVariantID, the ProductVariantKey will be
ignored.

16

RequiredProductVariantKey String Yes/No

Associate the required product variant object by
its ProductVariantID. If you specify
ProductVariantID, the ProductVariantKey will be
ignored.

apple-
ipad-
cover

UpdateDate DateTime No

Right
To import rights, go to Sales > Rights from the Storefront module menu. Click on the Import link and upload the CSV file.

Column Type
Data
required

Description Example

Act String Yes Type of import action to perform (Insert = i, Delete = d) i

RightID Integer Yes/No
Database object identifier. This value must be specified
when performing a delete action.

9

AdminNotes String No
Notes visible to store administrators only. You should
leave this field blank when inserting new unassigned
rights.

AssignedUserID Integer No Optionally associate this right to a user. 1401

Code String Yes The secret code that will be shown to the user.
ds52-
dad3

CreateDate DateTime No

IssueDate DateTime Yes The date this right was initially issued to the user.
2013-01-
01
00:00:00

RightDefinitionID Integer Yes
The right definition object identifier associated with this
right. The right definition is the template that determines
type of right.

23

SalesOrderDetailID Integer No

The SalesOrderDetailID that is associated with this
issued right after the purchase is completed. You should
leave this field blank when inserting new unassigned
rights.

UpdateDate DateTime No

Sales Order
To export sales orders, go to Sales > Orders from the Storefront module menu. Click on the Export link.

Column Type
Data
required

Description Example

Act String No No import action supported at the moment.

AdminNotes String No Notes intended for store administrators.

AffiliateID Integer No
The Affiliate ID tracked to the order if it
originated from a referral.

BillingCity String Yes

BillingCompany String No

BillingCountryCode String Yes

BillingEmail String Yes

BillingFirstName String Yes

BillingLastName String Yes

BillingPhone String No

BillingPostalCode String Yes

BillingStreet String Yes

BillingSubdivisionCode String Yes

BusinessTaxNumber String No Business tax number (e.g. VAT number).

CouponCodes String No Pipe delimited coupon codes.

CreateDate DateTime No

CultureCode String Yes The display culture.

CurrencyCultureCode String Yes The currency culture.

CustomerNotes String No Notes intended for customer.

DynamicFormResult XML No The result collected from DynamicForm.

ExchangeRate Decimal Yes
The exchange rate relative to the primary
currency.

FraudScore Integer No
The registered fraud score from 0 to 100 if
available.

FraudRiskGateway String No The risk gateway provider.

HandlingAmount Decimal Yes Handling amount.

HandlingDiscountAmount Decimal Yes Handling discount.

HandlingMethodID Integer No The HandlingMethod object identifier.

HandlingTaxAmount1 Decimal Yes

HandlingTaxAmount2 Decimal Yes

HandlingTaxAmount3 Decimal Yes

HandlingTaxAmount4 Decimal Yes

HandlingTaxAmount5 Decimal Yes

OrderDate DateTime Yes The order date.

OrderLocked Boolean Yes
Lock the order to prevent customer from
changing the order details when resuming
an incomplete order.

Origin Integer Yes
Where the order originated (Web Checkout
= 1, System Recurring = 2).

PackingMethodID Integer No PackingMethod object identifier.

ParentSalesOrderID Integer No
The parent sales order if this order belonged
in a sales order set.

PreferredUserPaymentID Integer No

PurchaseOrderNumber String No Purchase order number.

RewardsPointsQualified Integer Yes
The number of rewards points earned from
the purchase of this order.

RewardsPointsRewarded Integer Yes
The estimated number of points actually
rewarded to the customer for this order so
far.

SalesOrderGUID GUID Yes SalesOrder globally unique identifier.

SalesOrderID Integer Yes The object identifier.

SalesOrderNumber String Yes
The order number shown to customer and
printed on receipts.

SalesPaymentStatus Integer Yes
Sales payment status (Pending = 1, Paid =
2, Cancelled = 3, Refunded = 4).

SellerID Integer No The seller associated with this sales order.

ShippedDate DateTime No The date the order is shipped, if available.

ShippingAmount Decimal Yes

ShippingCity String Yes

ShippingCompany String No

ShippingCountryCode String Yes

ShippingDiscountAmount Decimal Yes

ShippingEmail String Yes

ShippingFirstName String Yes

ShippingLastName String Yes

ShippingMethodID Integer No ShippingMethod object identifier.

ShippingPackages XML No The packing result.

ShippingPhone String No

ShippingPostalCode String Yes

ShippingStatus Integer Yes
Shipping status (Not Required = 1, Not
Shipped = 2, Shipped = 3, Undeliverable =
4).

ShippingStreet String Yes

ShippingSubdivisionCode String Yes

ShippingTaxAmount1 Decimal Yes

ShippingTaxAmount2 Decimal Yes

ShippingTaxAmount3 Decimal Yes

ShippingTaxAmount4 Decimal Yes

ShippingTaxAmount5 Decimal Yes

ShippingTrackingCode String No Shipping tracking code.

ShippingUniversalServiceName String No

The globally unique name generated by the
system that corresponds to the shipping
gateway's service name used internally to
match a real-time shipping method.

Status Integer Yes
Sales order status (Pending = 1, Ordered =
2, Processing = 3, Completed = 4,
Cancelled = 5, Declined = 6, Incomplete = 7)

SubTotalAmount Decimal Yes Sub-total.

TaxAmount1 Decimal Yes

TaxAmount2 Decimal Yes

TaxAmount3 Decimal Yes

TaxAmount4 Decimal Yes

TaxAmount5 Decimal Yes

TaxDiscountAmount Decimal Yes

TotalAmount Decimal Yes

UpdateDate DateTime No

UserHostAddress String No User IP address.

UserID Integer No UserID object identifier.

WarehouseID Integer No
The warehouse associated to this sales
order.

Sales Order Detail
To export sales order details, go to Sales > Orders from the Storefront module menu. Click on the Export link. Then select
"Sales order detail".

Column Type
Data
required

Description Example

Act String No No import action supported at the moment.

AdminNotes String No Notes visible to the store administrator only.

BasePrice Decimal Yes

BookingStartDate DateTime No
The starting date for a booked order in UTC time
zone.

2016-01-
01
00:00:00

BookingStopDate DateTime No
The stopping date for a booked order in UTC time
zone.

2016-01-
06
00:00:00

CreateDate DateTime No

Depth Decimal Yes

DiscountAmount Decimal Yes

DynamicFormResult XML No

HandlingPrice Decimal Yes

Height Decimal Yes

PackageType Integer Yes
Package type for shipping calculation (Unspecified
= 1, Envelope = 1000, Box = 2000, Bag = 3000,
Tube = 4000).

ParentSalesOrderDetailID Integer No
Indicates if this SalesOrderDetail item is a product
part and child of a parent SalesOrderDetail object
usually in a bundled product scenario.

Price Decimal Yes

ProductCost Decimal No

ProductName String Yes Localized product name.

ProductPartID Integer No
References the ProductPart object usually from a
bundled product purchase.

ProductVariantExtension XML No

ProductVariantID Integer Yes ProductVariant object identifier.

ProductVariantName String No Localized product variant name.

Quantity Integer Yes

RecurringInterval Integer Yes The recurring interval.

RecurringIntervalType Integer Yes
The interval type (Day = 1, Week = 2, Month = 3,
Year = 4).

RecurringSalesOrderID Integer No
The associated RecurringSalesOrder object
identifier if this SalesOrderDetail object was
created from a recurring order.

RequireShipping Boolean Yes Indicate if product requires shipping.

SalesOrderDetailID Integer Yes The object identifier.

SalesOrderID Integer Yes The associated SalesOrder object identifier.

ShippingPrice Decimal Yes

ShippingStatus Integer Yes
Shipping status (Not Required = 1, Not Shipped =
2, Shipped = 3, Undeliverable = 4).

SKU String No

Status Integer Yes
Order detail status (Pending = 1, Ordered =
2, Processing = 3, Completed = 4, Quoted = 9)

TaxAmount1 Decimal Yes

TaxAmount2 Decimal Yes

TaxAmount3 Decimal Yes

TaxAmount4 Decimal Yes

TaxAmount5 Decimal Yes

UpdateDate DateTime No

Weight Decimal Yes

Width Decimal Yes

Voucher
To import vouchers, go to Sales > Vouchers from the Storefront module menu. Click on the Import link and upload the
CSV file.

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform (Insert = i,
Delete = d)

i

VoucherID Integer Yes/No
Database object identifier. This value must be
specified when performing a delete action.

7

AdminNotes String No Notes visible to store administrators only.

Amount Decimal Yes
The balance amount currently available in the
voucher.

10.00

AssignedUserID Integer No
Optionally associate this voucher to a user such
that only the registered is allowed to redeem the
voucher.

1401

Code String Yes
The voucher code must be a unique
alphanumeric number (A-Z, 0-9). The code is
treated as case-insensitive.

A60PB98Z0L123

CreateDate DateTime No

InitialAmount Decimal Yes
The starting amount of the voucher when it was
first created.

25.00

IssueDate DateTime Yes

The date this voucher was initially issued. This
date is used to determine the expiry date if the
voucher definition determines there is an
applicable expiration on this voucher.

2013-01-01
00:00:00

SalesOrderDetailID Integer No

The SalesOrderDetailID that is associated with
this voucher after the purchase is
completed. You should leave this field blank
when inserting new vouchers.

Status Integer Yes
The status of this voucher. Inactive = 1, Active =
2, Hold = 3, Cancelled = 4

2

UpdateDate DateTime No

VoucherDefinitionID Integer Yes

The voucher definition object identifier
associated with this voucher. The voucher
definition is the template that determines how
this voucher can be used.

23

Warehouse
To import/export warehouses, go to Catalog > Warehouses from the Storefront module menu. Click on the Import or
Export link.

Column Type
Data
required

Description Example

Act String Yes
Type of import action to perform (Insert = i, Update = u,
Delete = d)

u

WarehouseID Integer Yes/No
Database object identifier. This value is required when
performing an update or delete action if the
WarehouseKey is not provided.

98

WarehouseKey String Yes/No

A unique key that can be used to uniquely identify this
object. This could be a short meaningful text or simply a
GUID. If you don't specify a value, the system will
generate a unique key for you during insertion. This key
can be used to lookup the object if the WarehouseID is
not specified.

westcoast

City String Yes

CountryCode String Yes US

CreateDate DateTime No

Description String No Short description.

Email String No

Name String Yes Localized name.
West
Coast
Warehouse

Phone String No

PostalCode String Yes

SellerID Integer No Associate the seller object by its SellerID.

Street String Yes

SubdivisionCode String Yes The state, province or region code. US-CA

UpdateDate DateTime No

Examples
To obtain sample data to play with, please login to our demo site (http://demo.revindex.com) as a merchant and export out the

sample products CSV files that you can use to import into your own site.

Alternatively, you can simply configure a few products in your own Storefront and export out the data to see what the actual CSV

files look like. This will allow you to modify the CSV files and perform a bulk import.

http://demo.revindex.com/

Export products
You can easily export products from your Storefront by following the steps below:

1. Go to the Catalog > Products page.

2. Click Export button.

3. Choose the options you want.

4. Click Export button.

You will likely want to export the product variants too:

1. From the same screen, select export from "Product variant".

2. Choose the options you want.

3. Click Export button.

The full product consists of many data points from various entities. Simply repeat the steps above to export out the desired
related entities such as Gallery, Product attribute, Category, etc.

Insert products
Before you start inserting new products, we recommend that you first create a few sample products in your Storefront through

the normal administrative interface. Then follow the steps to export out the product file to see what the data looks like.

See Export products (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-export-

products/rvdwkpvm/section) for more information.

1. You will need to build your product CSV file according to the product file format specification

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-product/rvdwkpvm/section). The

best way is to open a previously exported CSV file using Excel (you may also use Notepad or any text editor).

2. The first row is the header row and needs to match the column names according to the entity file format.

3. Start entering data into the next row. Pay attention to the required columns. Even if a column is indicated as not data

required, the column must still be present but the value may be blank.

4. Make sure the Act column value is set to "i" for insert.

5. You can leave the database object identifier ProductID empty since this will be auto-generated by your database.

6. Enter a memorable unique ProductKey for this product (e.g. "apple-ipad"). It will be useful when you need to reference it

elsewhere in your other imports by key name instead of by its ID number.

7. Fill up the remaining required fields like Name, etc.

8. Repeat steps 3 to 7 for additional products you want to insert.

9. Save the file. Click Yes if Excel prompts you to save the file with features that are not compatible with CSV and
keeping this format.

10. Go to the Catalog > Products page. Click Import.

11. Choose the options.

12. Click Import.

13. Make sure there are no errors. If any error occurred, the system will rollback any changes by default. Correct any error

and re-import again.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-export-products/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-product/rvdwkpvm/section

You will want to repeat the similar steps at least for the Product variant and any related entities such as Gallery, Product

Category, etc.

Update products
Follow the steps to export out the product file to see what the data looks like. See Export products

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-export-products/rvdwkpvm/section) for

more information.

1. You will need to build your product CSV file according to the product file format specification

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-product/rvdwkpvm/section). The

best way is to open a previously exported CSV file using Excel (you may also use Notepad or any text editor).

2. The first row is the header row and needs to match the column names according to the entity file format.

3. Start entering data into the next row. Pay attention to the required columns. Even if a column is indicated as not data

required, the column must still be present but the value may be blank.

4. Make sure the Act column value is set to "u" for update. Please note not all entities support the update action. In this

case, you may need to perform a delete followed by an insert to simulate an update action.

5. The database object identifier ProductID is required since this value will be used to retrieve the product to update.

6. Fill up the remaining required fields like Name, etc.

7. Repeat steps 3 to 6 for additional products you want to update.

8. Save the file. Click Yes if Excel prompts you to save the file with features that are not compatible with CSV and
keeping this format.

9. Go to the Catalog > Products page. Click Import.

10. Choose the options.

11. Click Import.

12. Make sure there are no errors. If any error occurred, the system will rollback any changes by default. Correct any error

and re-import again.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-export-products/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-product/rvdwkpvm/section

Delete products
Follow the steps to export out the product file to see what the data looks like. See Export products

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-export-products/rvdwkpvm/section) for

more information.

1. You will need to build your product CSV file according to the product file format specification

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-product/rvdwkpvm/section). The

best way is to open a previously exported CSV file using Excel (you may also use Notepad or any text editor).

2. The first row is the header row and needs to match the column names according to the entity file format.

3. Start entering data into the next row. Pay attention to the required columns. Even if a column is indicated as not data

required, the column must still be present but the value may be blank.

4. Make sure the Act column value is set to "d" for delete.

5. The database object identifier ProductID is required since this value will be used to retrieve the product to delete. For

delete operations, other column fields are usually not required.

6. Repeat steps 3 to 5 for additional products you want to delete.

7. Save the file. Click Yes if Excel prompts you to save the file with features that are not compatible with CSV and
keeping this format.

8. Go to the Catalog > Products page. Click Import.

9. Choose the options.

10. Click Import.

11. Make sure there are no errors. If any error occurred, the system will rollback any changes by default. Correct any error

and re-import again.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-export-products/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-product/rvdwkpvm/section

Export products (SQL)
You can also export products to a CSV file is using the Host > SQL module with the latest DNN 7.2 or higher. You will
require host account access to run this operation. This allows you to manipulate the data to suit your file format.

1. Login as host.

2. Go to Host > SQL page.

3. Choose "SiteSqlServer" for your Connection dropdown.

4. Enter the following SQL query where X is your portal ID number.

5. Click Run Script.

6. Once the results are displayed, click on the Export to CSV or Export to Excel buttons depending on the file format
you like to safeguard.

SQL query is very flexible as it allows you to specify only the columns you want. For example, you can modify the query
above to show only the columns ProductID, Name and Overview:

You can also limit the number of records to return only 100 records and order by descending order like this:

You'll find countless online tutorials (http://www.w3schools.com/sql/default.asp) on how to manipulate SQL queries.

SELECT *
FROM {databaseOwner}{objectQualifier}Revindex_Storefront_Product
WHERE PortalID = X

SELECT *
FROM {databaseOwner}{objectQualifier}Revindex_Storefront_ProductVariant
WHERE PortalID = X

SELECT ProductID, Name, Overview
FROM {databaseOwner}{objectQualifier}Revindex_Storefront_Product
WHERE PortalID = X

SELECT TOP 100 ProductID, Name, Overview
FROM {databaseOwner}{objectQualifier}Revindex_Storefront_Product
WHERE PortalID = X
ORDER BY ProductID DESC

1
2
3
4
5
6
7
8
9

1
2
3
4
5

1
2
3
4
5
6

http://www.w3schools.com/sql/default.asp

Export orders (SQL)
You can also export to CSV or Excel file using the Host > SQL module with the latest DNN 7.2 or higher. You will require
host account access to run this operation. This allows you to manipulate the data to suit your file format.

1. Login as host.

2. Go to Host > SQL page.

3. Choose "SiteSqlServer" for your Connection dropdown.

4. Enter the following SQL query where X is your portal ID number.

5. Click Run Script.

6. Once the results are displayed, click on the Export to CSV or Export to Excel buttons depending on the file format you like
to safeguard.

SQL query is very flexible as it allows you to specify only the columns you want. For example, you can modify the query
above to show only the columns SalesOrderID, OrderDate and TotalAmount:

You can also limit the number of records to return only 100 records and order by descending order like this:

You'll find countless online tutorials (http://www.w3schools.com/sql/default.asp) on how to manipulate SQL queries.

SELECT *
FROM {databaseOwner}{objectQualifier}Revindex_Storefront_SalesOrder
WHERE PortalID = X

SELECT sod.*
FROM {databaseOwner}{objectQualifier}Revindex_Storefront_SalesOrderDetail sod
JOIN {databaseOwner}{objectQualifier}Revindex_Storefront_SalesOrder so
ON so.SalesOrderID = sod.SalesOrderID
WHERE so.PortalID = X

SELECT SalesOrderID, OrderDate, TotalAmount
FROM {databaseOwner}{objectQualifier}Revindex_Storefront_SalesOrder
WHERE PortalID = X

SELECT TOP 100 SalesOrderID, OrderDate, TotalAmount
FROM {databaseOwner}{objectQualifier}Revindex_Storefront_SalesOrder
WHERE PortalID = X
ORDER BY SalesOrderID DESC

1
2
3
4
5
6
7
8
9
1
01
1

1
2
3
4
5

1
2
3
4
5
6

http://www.w3schools.com/sql/default.asp

How to bulk update gallery images
The following example assumes you want to update all product images of a certain format. Make sure you read the
Overview (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-
overview/rvdwkpvm/section) first to understand how it works. Please refer to Gallery
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-gallery/rvdwkpvm/section) for full
column specifications.

Use object keys to help match products to gallery objects easily. Please see How to bulk update product keys
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-bulk-update-product-
keys/rvdwkpvm/section) for example on initializing your object keys.

1. Take a full backup of your site prior to doing any bulk update operation.

2. Under Catalog > Products, click Export button. Choose Export from = "Gallery" and click Export to download the

CSV file. Open the CSV file in your favorite spreadsheet program.

3. The gallery export may include images that are related to other entities like category and variant. Since you only
want to update product images, delete all rows that don't have a value in the ProductID column. If you only want to
affect products of a certain format (e.g. thumbnail), you need to further remove rows that don't belong to the desired
Format value.

4. For every row in the Act column, set the value "d" to indicate a delete action. Save your file.

5. Under the Catalog > Products screen, click on the Import button. Choose Import to = "Gallery" and choose your

newly edited CSV file. Click Import. If it succeeded, all product images that are marked "d" will have been deleted from

your system.

6. Continuing from your spreadsheet, now replace the "d" value with the "i" action in the Act column for all the rows to
indicate an insert action.

7. From your site Admin > File Management page, create a folder to temporarily hold your new images (e.g.
"MyUploads"). Upload your new images to the newly created folder. You may use FTP or your browser to perform
the actual uploads of the images.

8. In the StageMediaFile column, replace the value with your newly uploaded image filenames. The path should be
relative to your portal folder path. You can make use of the ProductKey column to help match the product with the
correct image.

9. Under the Catalog > Products screen, click on the Import button. Choose Import to = "Gallery" and choose your

newly edited CSV file. Click Import. If it succeeded, all product images that are marked "i" will have been imported to your

system.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-overview/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-gallery/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/how-to-bulk-update-product-keys/rvdwkpvm/section

How to bulk update product keys
Product keys are useful keywords to help match products in a CSV file for import and export purposes. If you never
assigned sensible product keys during product creation, the system will have generated one for you using a random GUID
value. You can follow the steps below to bulk assign a more sensible value that will become helpful for other future import
operations. The following example shows how to bulk update your product keys. Make sure you read the Overview
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-overview/rvdwkpvm/section) first
to understand how it works. Please refer to Product (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/import-export-product/rvdwkpvm/section) for full column specifications.

Enable the Show object key feature under the Configuration > General settings. Enabling this feature will make the
product key appear in your catalog screens. If you don't have many products, you can edit the product key from the
catalog screens individually instead of performing the bulk update below.

1. Make sure to take a full backup before performing any bulk operation.

2. Under Catalog > Products, click on Export. Choose Export from = "Product" and click Export to download the CSV

file. Open the CSV file in your favorite spreadsheet program.

3. For every row, set the Act column value to "u" to indicate update action.

4. Copy the Name value and paste to the ProductKey column row for row. You need to make sure each ProductKey
value is unique in your system. If you have any duplicates, you can simply append a number (e.g. "Brown shoe 18")
to make it unique. Save your file.

5. Under Catalog > Products, click on Import. Choose Export to = "Product", choose your file and click Import.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-overview/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-export-product/rvdwkpvm/section

REST API
Revindex Storefront provides a powerful Application Programming Interface (API) that allows you to query, insert, update
or delete almost any object in your store programmatically including categories, products, gallery images, distributor,
manufacturer, coupons, sales orders, etc.. You may use the API to create specialized screens for your end users,
synchronize data between servers or portals or perhaps to export data into your own internal reporting system.

The API is provided in the form of a REST Web service and is therefore easily accessible from any location as long as your
network and permissions permit it. Since it follows the REST architecture, which primarily uses the familiar XML/JSON
over HTTP, it is also incredibly simple to use by any programming languages such as C#, Java, Javascript, PHP, Ruby,
VB.NET or even plain HTML.

Please note you must first enable the API feature under Configuration > General to access this functionality.

Our goal is to provide a stable platform for the API. Although infrequent, the API specifications may still change over
time to reflect new feature additions or fixes. It is your responsibility to test and ensure your applications adapt and
follow the latest specifications. If you're using the API, we strongly recommend that you perform internal testing on a
development or staging machine after every Storefront upgrades to ensure it is working correctly before upgrading
on production.

We recommend that you take a full backup before using any API service.

Overview
You must first enable the API feature under Configuration > General to access this functionality. Once enabled, you can
login as host superuser to access the Configuration > API menu to generate your API keys.

You will also need some basic understanding of how the API service uses XML/JSON and the HTTP protocol to transmit
data.

HTTP Transmission

The API service uses Internet HTTP protocol to transmit data like ordinary Web pages. However, it will only accept POST
method calls similar to form submissions by a Web page. If a GET request is received (such as navigating directly to the
URL of the API service from the Web browser), the API service will return a useful HTML page that you can use, in turn, to
send a simple POST request for quick tries (any request made here will affect your environment's data).

Because it uses the same HTTP protocol as your Web site, it follows that the same timeout and server limitations apply to
the API service as they do to your Web site. You may want to consider changing the default request timeout for your API
call if you expect to initiate a long running request.

For security purposes, it is recommended to use the API service on a HTTPS (SSL) URL address to encrypt your
transmissions.

XML or JSON Format

XML and JSON are simply encoding formats used to transmit the data. Both formats are interchangeable. By default, the
REST API will communicate using XML. To communicate using JSON, you need to pass the "Content-type:
application/json" in your HTTP request header. Throughout this documentation, we'll simply refer the data in XML, but
you can expect the equivalent notation is available in JSON.

Request

The API service expects to receive a HTTP posted data in properly formatted XML or JSON for each method call. Any
XML/JSON reserved characters must be properly encoded. A typical request will consist of the following nodes:

Node Required Data Type Description

request Yes XML Root node.

 version Yes Decimal Indicates the API version. Currently, you should specify "1.0".

 credential Yes XML

 username Yes String API username.

 apiKey Yes String API Key.

 service Yes String Any valid supported service name (e.g. "GetActiveProduct")

 parameters Yes XML

 param1... Conditional Parameter as required by the service being invoked.

 param2... Conditional Parameter as required by the service being invoked.

Response

After submitting a request, you can expect to receive a typical HTTP status code response (200 OK, 403 Forbidden, etc.)
as you would expect in normal Web requests. The common HTTP status codes are noted below. For a complete list,
please consult the W3.org web site (http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html). The first verification is to
ensure you are receiving the 200 OK status to ensure you are at least successfully communicating with the API service
over the network.

Status Code Description

200 OK

400 Bad request

401 Unauthorized

403 Forbidden

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

If the operation succeeded, you can expect to receive the response data in XML format. A typical XML response will
consist of the following nodes below.

Node Data Type Description

response XML Root node

 code Integer The service response code indicating success or failure.

 message String The success or failure message.

 return XML Any data being returned is stored underneath this node.

 data1... Actual data being returned, if any.

 data2... Actual data being returned, if any.

The following table lists the possible service response codes returned in the XML/JSON. It is important to verify the
response for the 2000 Success code to ensure there are no errors.

Code Description

2000 Success

4001 XML Parsing error

4002 Authentication error

4003 Service execution error.

4004 Service not found.

4005 Access permission error.

4006 Validation error.

Data Types
The API uses XML/JSON to hold parameter values being passed and returned. You need to follow the data type
convention used in the API in order to correctly pass the parameters and consume the return values.

Data
Type

Description Valid Values

Boolean A logical boolean. "True" or "False" (without the quotes)

Byte A Base64 encoded string of the byte array data. YTM0NZomIzI2OTsmIzM0NTueYQ==

DateTime A valid date with time component. 2001-01-01T12:00:00

Decimal A numeric value that can contain a decimal point (x.xx) 12.49

Double A numeric value that can contain decimal point (x.xx) 3289.3243

GUID Globally unique identifier.
4F43B5CD-6817-4a64-9B32-
640076F2A3A6

Integer A 32-bit numeric value without decimals. 12345

Long A 64-bit numeric value without decimals. 432432483244

String Any text value. "Hello world" (without the quotes)

TimeSpan A valid time component. 22:00:00

XML XML data.
Any valid XML data. The equivalent is
also available in JSON notation.

XML
Code

XML data containing a "code" element with a "version" and
"type" attribute. The enclosed value is the actual formula.

<code version="1.0"
type="aspnetmarkup">...</code>

XML
Locale

XML element named "locale" with any number of culture codes
as attributes to hold the localized string.

<locale en-US="Hello" fr-
FR="Bonjour" />

XML Rule
XML data containing a "rule" element with a "version" and
"type" attribute. The enclosed value is the actual formula.

<rule version="1.0" type="xslt">...
</rule>

Authentication
Currently, only Administrators and Host users are allowed to connect to the API service. In order to authenticate with the
API service, you will need to obtain your Username and API Key from your configuration panel. The API Key is different
than your normal Web site password. Every request must include the credential node in your XML/JSON.

Examples

The example below authenticates as Administrator while calling the GetActiveProduct service.

<?xml version="1.0" encoding="utf-8"?>
<request>
 <version>1.0</version>
 <credential>
 <username>Administrator</username>
 <apikey>00000000-0000-0000-0000-000000000000</apikey>
 </credential>
 <service>GetActiveProduct</service>
 <parameters>
 <productid>1</productid>
 </parameters>
</request>

1
2
3
4
5
6
7
8
9
1
01
11
21
31
4

Services
The following pages describes the available services provided by the API.

Please pay close attention to the request parameters and return data. For security purposes, you can only query or change
data belonging to the same portal (e.g. for the given API URL belonging to portal 0, you can only query or affect data from
its own portal. You cannot request the CategoryID belonging to a different portal).

Category
The category is used to group products together in a display list. See ProductCategory
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/rest-api-productcategory/rvdwkpvm/section)
section for setting up the relationship between products and categories.

DeleteCategory

This service is used to delete a Category object.

Request Parameters

Node Required Data Type Description

categoryID Yes Integer The object identifier.

Return Data

None

GetCategory

This service is used to query the Category object.

Request Parameters

Node Required Data Type Description

categoryID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

category XML Container node.

 availabilityRule XML Rule The rule to describe the conditions when the category can be shown.

 categoryID Integer The object identifier.

 categoryKey String
A unique key that can be used to uniquely identify this object. This could be a short
meaningful text or simply a GUID.

 createDate DateTime Creation date.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/rest-api-productcategory/rvdwkpvm/section

 description
XML
Locale

Localized description.

 displayOrder Integer Sort order for display.

 displayTemplate String The associated display template.

 extension XML Additional data in XML.

 metaDescription
XML
Locale

Localized meta description.

 metaKeywords
XML
Locale

Localized meta keywords.

 name
XML
Locale

Localized name.

 pageTitle
XML
Locale

Localized page title.

parentCategoryID

Integer The object identifier of the parent category if this is a child category.

 portalID Integer

 published Boolean If category should be published and visible by end users.

 updateDate DateTime Update date.

 urlName
XML
Locale

Localized URL name for SEO.

GetCategories

This service is used to get all the Category objects belonging to the portal.

Request Parameters

None

Return Data

Node Data Type Description

categories XML Container node

 category XML Zero or more category nodes with same data structure as GetCategory service return data.

InsertCategory

This service is used to create a new Category object.

Request Parameters

Node Required
Data
Type

Description

availabilityRule No
XML
Rule

The rule to describe the conditions when the category can be shown.

categoryKey Yes String
A unique key that can be used to uniquely identify this object. This could
be a short meaningful text or simply a GUID.

description No
XML
Locale

Localized description.

displayOrder Yes Integer Sort order for display.

displayTemplate No String The associated display template.

extension No XML Additional data in XML.

metaDescription No
XML
Locale

Localized meta description.

metaKeywords No
XML
Locale

Localized meta keywords.

name Yes
XML
Locale

Localized name.

pageTitle No
XML
Locale

Localized page title.

parentCategoryID No Integer The object identifier of the parent category if this is a child category.

published Yes Boolean If category should be published and visible by end users.

urlName No
XML
Locale

Localized URL name for SEO.

Return Data

Same as GetCategory service return data.

UpdateCategory

This service is used to update a Category object.

Request Parameters

Node Required
Data
Type

Description

availabilityRule No
XML
Rule

The rule to describe the conditions when the category can be shown.

categoryID Yes Integer The object identifier.

categoryKey Yes String
A unique key that can be used to uniquely identify this object. This could
be a short meaningful text or simply a GUID.

description No
XML
Locale

Localized description.

displayOrder Yes Integer Sort order for display.

displayTemplate No String The associated display template.

extension No XML Additional data in XML.

metaDescription No
XML
Locale

Localized meta description.

metaKeywords No
XML
Locale

Localized meta keywords.

name Yes
XML
Locale

Localized name.

pageTitle No
XML
Locale

Localized page title.

parentCategoryID No Integer The object identifier of the parent category if this is a child category.

published Yes Boolean If category should be published and visible by end users.

urlName No
XML
Locale

Localized URL name for SEO.

Return Data

Same as GetCategory service return data.

Coupon
The coupon is a token used to trigger certain promotion rules such as giving a discount for purchases.

DeleteCoupon

This service is used to delete a Coupon object.

Request Parameters

Node Required Data Type Description

couponID Yes Integer The object identifier.

Return Data

None

GetCoupon

This service is used to query the Category object.

Request Parameters

Node Required Data Type Description

couponID Yes Integer The object identifier.

Return Data

Node Data Type Description

coupon XML Container node.

 active Boolean Flag to indicate if coupon is active and can be used.

 availabilityRule XML Rule The rule to describe the conditions when the coupon can be used.

 code String The coupon code.

 couponID Integer The object identifier.

 createDate DateTime Creation date.

 description XML Locale Localized description.

 inventory Integer The number of remaining inventory of coupons.

 portalID Integer

 startDate DateTime The start date when the coupon is valid for using.

 stopDate DateTime The stop date the coupon is no longer valid for using.

 updateDate DateTime Update date.

GetCoupons

This service is used to get all the Coupon objects belonging to the portal.

Request Parameters

None

Return Data

Node Data Type Description

coupons XML Container node

 coupon XML Zero or more coupon nodes with same data structure as GetCoupon service return data.

InsertCoupon

This service is used to create a new Coupon object.

Request Parameters

Node Required
Data
Type

Description

active Yes Boolean Flag to indicate if coupon is active and can be used.

availabilityRule No XML Rule The rule to describe the conditions when the coupon can be used.

code Yes String The coupon code must be unique across your portal.

description No
XML
Locale

Localized description.

inventory No Integer
The number of remaining inventory of coupons. Value must be greater or
equal to zero.

startDate No DateTime The start date when the coupon is valid for using.

stopDate No DateTime The stop date the coupon is no longer valid for using.

Return Data

Same as GetCoupon service return data.

UpdateCoupon

This service is used to update a Coupon object.

Request Parameters

Node Required
Data
Type

Description

active Yes Boolean Flag to indicate if coupon is active and can be used.

availabilityRule No XML Rule The rule to describe the conditions when the coupon can be used.

code Yes String The coupon code must be unique across your portal.

couponID Yes Integer The object identifier.

description No
XML
Locale

Localized description.

inventory No Integer
The number of remaining inventory of coupons. Value must be greater or
equal to zero.

startDate No DateTime The start date when the coupon is valid for using.

stopDate No DateTime The stop date the coupon is no longer valid for using.

Return Data

Same as GetCoupon service return data.

CrosssellProduct
CrosssellProduct is the object relationship associating cross-sell products together.

DeleteCrosssellProduct

This service is used to delete a CrosssellProduct object.

Request Parameters

Node Required Data Type Description

crosssellProductID Yes Integer The object identifier.

Return Data

None

GetCrosssellProduct

This service is used to query the CrosssellProduct object.

Request Parameters

Node Required Data Type Description

crosssellProductID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

crosssellProduct XML Container node.

 active Boolean

 availabilityRule XML Rule The rule to describe the conditions when the offer can be purchased.

 createDate DateTime Creation date.

crosssellProductID

Integer The object identifier.

 description
XML
Locale

The description to provide an explanation for the offer.

 displayOrder Integer Sort order for display.

 offerProductID Integer The Product object identifier offered.

 portalID Integer

 productID Integer
Product object identifier in this relation. If null, the cross-sell product is offered for
any purchase.

 startDate DateTime The start date when the offer is available for purchase.

 stopDate DateTime The stop date when the offer is no longer available for purchase.

 title
XML
Locale

The offer title to grab the customer's attention.

 updateDate DateTime Update date.

GetCrosssellProductsByProduct

This service is used to get all the CrosssellProduct objects belonging to the product.

Request Parameters

Node Required
Data
Type

Description

productID No Integer
The Product object identifier. If null, the cross-sell product is offered for any
purchase.

Return Data

Node
Data
Type

Description

crosssellProducts XML Container node

crosssellProduct

XML
Zero or more crosssellProduct nodes with same data structure as
GetCrosssellProduct service return data.

InsertCrosssellProduct

This service is used to create a new CrosssellProduct object.

Request Parameters

Node Required
Data
Type

Description

active Yes Boolean

availabilityRule No XML Rule The rule to describe the conditions when the offer can be purchased.

description No
XML
Locale

The description to provide an explanation for the offer.

displayOrder Yes Integer Sort order for display.

offerProductID Yes Integer The Product object identifier offered.

productID No Integer
The Product object identifier. If null, the cross-sell product is offered for
any purchase.

startDate No DateTime The start date when the offer is available for purchase.

stopDate No DateTime The stop date when the offer is no longer available for purchase.

title No
XML
Locale

The offer title to grab the customer's attention.

Return Data

Same as GetCrosssellProduct service return data.

UpdateCrosssellProduct

This service is used to update the CrosssellProduct object.

Request Parameters

Node Required
Data
Type

Description

active Yes Boolean

availabilityRule No XML Rule The rule to describe the conditions when the offer can be purchased.

crosssellProductID Yes Integer The object identifier.

description No
XML
Locale

The description to provide an explanation for the offer.

displayOrder Yes Integer Sort order for display.

offerProductID Yes Integer The Product object identifier offered.

productID No Integer
The Product object identifier. If null, the cross-sell product is offered
for any purchase.

startDate No DateTime The start date when the offer is available for purchase.

stopDate No DateTime The stop date when the offer is no longer available for purchase.

title No
XML
Locale

The offer title to grab the customer's attention.

Return Data

Same as GetCrosssellProduct service return data.

Distributor

The distributor is usually a company that supplies the product to you.

DeleteDistributor

This service is used to delete a Distributor object.

Request Parameters

Node Required Data Type Description

distributorID Yes Integer The object identifier.

Return Data

None

GetDistributor

This service is used to query the Distributor object.

Request Parameters

Node Required Data Type Description

distributorID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

distributor XML Container node.

 createDate DateTime Creation date.

 description
XML
Locale

Localized description.

 displayOrder Integer Sort order for display.

displayTemplate

String The associated display template.

 distributorID Integer The object identifier.

 distributorKey String
A unique key that can be used to uniquely identify this object. This could be a short
meaningful text or simply a GUID.

 email String

 extension XML Additional data.

metaDescription

XML
Locale

Localized meta description.

 metaKeywords
XML
Locale

Localized meta keywords.

 name
XML
Locale

Localized name.

 pageTitle
XML
Locale

Localized page title.

 phone String

 portalID Integer

 published Boolean If distributor should be published and visible by end users.

 updateDate DateTime Update date.

 urlName
XML
Locale

Localized URL name for SEO.

GetDistributors

This service is used to get all the Distributor objects belonging to the portal.

Request Parameters

None

Return Data

Node
Data
Type

Description

distributors XML Container node

distributor

XML
Zero or more distributor nodes with same data structure as GetDistributor service return
data.

InsertDistributor

This service is used to create a new Distributor object.

Request Parameters

Node Required
Data
Type

Description

description No
XML
Locale

Localized description.

displayOrder Yes Integer Sort order for display.

displayTemplate No String The associated display template.

distributorKey Yes String
A unique key that can be used to uniquely identify this object. This could
be a short meaningful text or simply a GUID.

email No String

extension No XML Additional data.

metaDescription No
XML
Locale

Localized meta description.

metaKeywords No
XML
Locale

Localized meta keywords.

name Yes
XML
Locale

Localized name.

pageTitle No
XML
Locale

Localized page title.

phone No String

published Yes Boolean If distributor should be published and visible by end users.

urlName No
XML
Locale

Localized URL name for SEO.

Return Data

Same as GetDistributor service return data.

UpdateDistributor

This service is used to update a Distributor object.

Request Parameters

Node Required
Data
Type

Description

description No
XML
Locale

Localized description.

displayOrder Yes Integer Sort order for display.

displayTemplate No String The associated display template.

distributorID Yes Integer The object identifier.

distributorKey Yes String
A unique key that can be used to uniquely identify this object. This could
be a short meaningful text or simply a GUID.

email No String

extension No XML Additional data.

metaDescription No
XML
Locale

Localized meta description.

metaKeywords No
XML
Locale

Localized meta keywords.

name Yes
XML
Locale

Localized name.

pageTitle No
XML
Locale

Localized page title.

phone No String

published Yes Boolean If distributor should be published and visible by end users.

urlName No
XML
Locale

Localized URL name for SEO.

Return Data

Same as GetDistributor service return data.

Gallery

The gallery is used to store media data such as images.

DeleteGallery

This service is used to delete a Gallery object.

Request Parameters

Node Required Data Type Description

galleryID Yes Integer The object identifier.

Return Data

None

GetGallery

This service is used to query the Gallery object.

Request Parameters

Node Required Data Type Description

galleryID Yes Integer The object identifier.

Return Data

Node Data Type Description

gallery XML Container node.

 alternateText
XML
Locale

 categoryID Integer The Category object identifier if this gallery is associated to a category object.

 createDate DateTime Creation date.

 displayOrder Integer Sort order for display.

 format Integer The gallery format type (Detailed = 1, Display = 2, Thumbnail = 3).

 galleryID Integer The object identifier.

 height Integer Height in pixels.

 mediaFile
XML
Locale

The localized file name saved to disk.

 mediaData
XML
Locale

The localized media data in Base64 encoding.

e.g. <locale en-US="TWFuIGlzIGRpc3RXNoZ..." fr-FR="AbSTWFuIG1aXNoZ..."/>

 mediaType
XML
Locale

The localized media type (image/gif, image/jpeg or image/png).

e.g. <locale en-US="image/jpeg" fr-FR="image/jpeg" />

 portalID Integer

 productID Integer The Product object identifier if this gallery is associated to a product object.

productVariantID

Integer
The ProductVariant object identifier if this gallery is associated to a product variant
object.

 updateDate DateTime Update date.

 width Integer The width in pixels.

GetGalleriesByCategory

This service is used to get all the Gallery objects belonging to the category.

Request Parameters

Node Required Data Type Description

categoryID Yes Integer The Category object identifier.

Return Data

Node Data Type Description

galleries XML Container node

 gallery XML Zero or more gallery nodes with same data structure as GetGallery service return data.

GetGalleriesByProduct

This service is used to get all the Gallery objects belonging to the product.

Request Parameters

Node Required Data Type Description

productID Yes Integer The Product object identifier.

Return Data

Node Data Type Description

galleries XML Container node

 gallery XML Zero or more gallery nodes with same data structure as GetGallery service return data.

GetGalleriesByProductVariant

This service is used to get all the Gallery objects belonging to the product variant.

Request Parameters

Node Required Data Type Description

productVariantID Yes Integer The ProductVariant object identifier.

Return Data

Node Data Type Description

galleries XML Container node

 gallery XML Zero or more gallery nodes with same data structure as GetGallery service return data.

InsertGallery

This service is used to create a new Gallery object.

Request Parameters

Node Required
Data
Type

Description

alternateText No
XML
Locale

categoryID No Integer
The Category object identifier if this gallery is associated to a category
object. If you specify this value, you must not specify the productID or
productVariantID.

displayOrder Yes Integer Sort order for display.

format Yes Integer The gallery format type (Detailed = 1, Display = 2, Thumbnail = 3).

height Yes Integer Height in pixels.

mediaFile Yes
XML
Locale

The localized file name saved to disk. You can set a random filename
using a GUID value.

mediaData Yes
XML
Locale

The localized media data in Base64 encoding.

e.g. <locale en-US="TWFuIGlzIGRpc3RpNoZ..." fr-
FR="AbSTWFuIp1aXNoZ..."/>

mediaType Yes
XML
Locale

The localized media type (image/gif, image/jpeg or image/png).

e.g. <locale en-US="image/jpeg" fr-FR="image/jpeg" />

productID No Integer
The Product object identifier if this gallery is associated to a product object.
If you specify this value, you must not specify the categoryID or
productVariantID.

productVariantID No Integer
The ProductVariant object identifier if this gallery is associated to a product
variant object. If you specify this value, you must not specify the
categoryID or productID.

width Yes Integer The width in pixels.

Return Data

Same as GetGallery service return data.

Locale
The following service will retrieve information about the portal languages and cultures available.

GetLocale

This service is used to query the Locale object.

Request Parameters

Node Required Data Type Description

code Yes String The locale code (e.g. "en-US" or "fr-FR").

Return Data

Node Data Type Description

locale XML

 code String

 createdOnDate DateTime

 englishName String

 fallback String

 isPublished Boolean

 languageID Integer

 lastModifiedOnDate DateTime

 nativeName String

 portalID Integer

 text String

GetLocales

This service is used to query all the available portal Locales object.

Request Parameters

None

Return Data

Node Data Type Description

locales XML Container node

 locale XML Zero or more locale nodes with same data structure as GetLocale service return data.

Manufacturer
The manufacturer is typically a company that fabricates the product.

DeleteManufacturer

This service is used to delete a Manufacturer object.

Request Parameters

Node Required Data Type Description

manufacturerID Yes Integer The object identifier.

Return Data

None

GetManufacturer

This service is used to query the Manufacturer object.

Request Parameters

Node Required Data Type Description

manufacturerID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

manufacturer XML Container node.

 createDate DateTime Creation date.

 description
XML
Locale

Localized description.

 displayOrder Integer Sort order for display.

displayTemplate

String The associated display template.

 email String

 extension XML Additional data.

 manufacturerID Integer The object identifier.

manufacturerKey

String
A unique key that can be used to uniquely identify this object. This could be a short
meaningful text or simply a GUID.

metaDescription

XML
Locale

Localized meta description.

 metaKeywords
XML
Locale

Localized meta keywords.

 name
XML
Locale

Localized name.

 pageTitle
XML
Locale

Localized page title.

 phone String

 portalID Integer

 published Boolean If manufacturer should be published and visible by end users.

 updateDate DateTime Update date.

 urlName
XML
Locale

Localized URL name for SEO.

GetManufacturers

This service is used to get all the Manufacturer objects belonging to the portal.

Request Parameters

None

Return Data

Node
Data
Type

Description

manufacturers XML Container node

manufacturer

XML
Zero or more manufacturer nodes with same data structure as GetManufacturer service
return data.

InsertManufacturer

This service is used to create a new Manufacturer object.

Request Parameters

Node Required
Data
Type

Description

description No
XML
Locale

Localized description.

displayOrder Yes Integer Sort order for display.

displayTemplate No String The associated display template.

email No String

extension No XML Additional data.

manufacturerKey Yes String
A unique key that can be used to uniquely identify this object. This could
be a short meaningful text or simply a GUID.

metaDescription No
XML
Locale

Localized meta description.

metaKeywords No
XML
Locale

Localized meta keywords.

name Yes
XML
Locale

Localized name.

pageTitle No
XML
Locale

Localized page title.

phone No String

published Yes Boolean If manufacturer should be published and visible by end users.

urlName No
XML
Locale

Localized URL name for SEO.

Return Data

Same as GetManufacturer service return data.

UpdateManufacturer

This service is used to update a Manufacturer object.

Request Parameters

Node Required
Data
Type

Description

description No
XML
Locale

Localized description.

displayOrder Yes Integer Sort order for display.

displayTemplate No String The associated display template.

manufacturerID Yes Integer The object identifier.

email No String

extension No XML Additional data.

manufacturerKey Yes String
A unique key that can be used to uniquely identify this object. This could
be a short meaningful text or simply a GUID.

metaDescription No
XML
Locale

Localized meta description.

metaKeywords No
XML
Locale

Localized meta keywords.

name Yes
XML
Locale

Localized name.

pageTitle No
XML
Locale

Localized page title.

phone No String

published Yes Boolean If manufacturer should be published and visible by end users.

urlName No
XML
Locale

Localized URL name for SEO.

Return Data

Same as GetManufacturer service return data.

Portal
The following service is useful to query information about the portal.

GetPortalInfo

This service is used to query the Portal object.

Request Parameters

None

Return Data

Node Data Type Description

portalInfo XML

 administratorID Integer

 administratorRoleID Integer

 administratorRoleName String

 adminTabID Integer

 backgroundFile String

 bannerAdvertising Integer

 createdByUserID Integer

 createdOnDate DateTime

 cultureCode String

 currency String

 defaultLanguage String

 description String

 email String

 expiryDate DateTime

 footerText String

 guid GUID

 homeDirectory String

 homeTabID Integer

 hostFee Double

 hostSpace Integer

 keyID Integer

 keyWords String

 lastModifiedByUserID Integer

 lastModifiedOnDate DateTime

 loginTabID Integer

 logoFile String

 pageQuota Integer

 pages Integer

 portalGroupID Integer

 portalID Integer

 portalName String

 registeredRoleID Integer

 registeredRoleName String

 registerTabID Integer

 searchTabID Integer

 splashTabID Integer

 superTabID Integer

 userQuota Integer

 userRegistration Integer

 users Integer

 userTabID Integer

 version String

Product

DeleteProduct

This service is used to delete a Product object.

Request Parameters

Node Required Data Type Description

productID Yes Integer The object identifier.

Return Data

None

GetActiveProduct

This service is used to query the Product object.

Request Parameters

Node Required Data Type Description

productID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

product XML Container node.

 allowInternetOrder Boolean Allow taking orders over the Internet.

 allowPhoneOrder Boolean Allow taking order over the phone.

allowProductReview

Boolean Allow users to write review for this product.

 availabilityRule XML Rule The rule to describe the conditions when the product can be purchased.

 buyingGuide
XML
Locale

Localized description.

 buyingGuideName
XML
Locale

Override buying guide description name.

 createDate DateTime Creation date.

 displayOrder Integer Sort order for display.

 displayTemplate String The associated display template.

 dynamicFormCode
XML
Code

Custom HTML or input form elements.

 extension XML Additional data in XML.

 faq
XML
Locale

Localized description.

 faqName
XML
Locale

Override FAQ description name.

 featured Boolean Localized description.

 metaDescription
XML
Locale

Localized meta description.

 metaKeywords
XML
Locale

Localized meta keywords.

 name
XML
Locale

Localized name.

 overview
XML
Locale

Localized description.

 overviewName
XML
Locale

Override overview description name.

 pageTitle
XML
Locale

Localized page title.

 portalID Integer

 productDetailUrl String
Specify a custom product detail page for this product or set to empty or null to use
the default product detail page. Enter a valid Tab ID number for the page.

 productID Integer The object identifier.

 productKey String
A unique key that can be used to uniquely identify this object. This could be a
short meaningful text or simply a GUID.

 productType Integer The type of product (Regular = 1).

 published Boolean If product should be published and visible by end users.

 redirectUrl String
Redirect product detail page to URL location. Useful for maintaining SEO value
for a discontinued product.

 sellerID Integer Indicate if this product belongs to a seller.

 showAddToCart Boolean

showAddToWishList

Boolean

 showBuyNow Boolean

 showInventory Boolean

 showMSRP Boolean

 showPrice Boolean

 showQuantity Boolean

showRewardPoints

Boolean

 showSavings Boolean

 showSeeDetails Boolean

 showSKU Boolean

 showSocialShare Boolean

 showUpdate Boolean

 specifications
XML
Locale

Localized description.

specificationsName

XML
Locale

Override specifications description name.

 startDate DateTime The start date when the product is available for purchase.

 stopDate DateTime The stop date when the product is no longer available for purchase.

 summary
XML
Locale

Localized description.

 terms
XML
Locale

Localized description.

 termsName
XML
Locale

Override terms description name.

 updateDate DateTime Update date.

 urlName
XML
Locale

Localized URL name for SEO.

GetActiveProducts

This service is used to get all the Product objects belonging to the portal.

Request Parameters

None

Return Data

Node
Data
Type

Description

products XML Container node

product

XML
Zero or more product nodes with same data structure as GetActiveProduct service return
data.

InsertProduct

This service is used to create a new Product object.

Request Parameters

Node Required
Data
Type

Description

allowInternetOrder Yes Boolean Allow taking orders over the Internet.

allowPhoneOrder Yes Boolean Allow taking order over the phone.

allowProductReview Yes Boolean Allow users to write review for this product.

availabilityRule No XML Rule
The rule to describe the conditions when the product can be
purchased.

buyingGuide No
XML
Locale

Localized description.

buyingGuideName No
XML
Locale

Override buying guide description name.

displayOrder Yes Integer Sort order for display.

displayTemplate No String The associated display template.

dynamicFormCode No
XML
Code

Custom HTML or input form elements.

extension No XML Additional data in XML.

faq No
XML
Locale

Localized description.

faqName No
XML
Locale

Override FAQ description name.

featured Yes Boolean Localized description.

metaDescription No
XML
Locale

Localized meta description.

metaKeywords No
XML
Locale

Localized meta keywords.

name Yes
XML
Locale

Localized name.

overview No
XML
Locale

Localized description.

overviewName No
XML
Locale

Override overview description name.

pageTitle No
XML
Locale

Localized page title.

productDetailUrl No String

Specify a custom product detail page for this product or set to empty
or null to use the default product detail page. Enter a valid Tab ID
number for the page.

productKey Yes String
A unique key that can be used to uniquely identify this object. This
could be a short meaningful text or simply a GUID.

productType Yes Integer The type of product (Regular = 1).

published Yes Boolean If product should be published and visible by end users.

redirectUrl No String URL or Tab ID number.

sellerID No Integer Indicate if this product belongs to a seller.

showAddToCart Yes Boolean

showAddToWishList Yes Boolean

showBuyNow Yes Boolean

showInventory Yes Boolean

showMSRP Yes Boolean

showPrice Yes Boolean

showQuantity Yes Boolean

showRewardPoints Yes Boolean

showSavings Yes Boolean

showSeeDetails Yes Boolean

showSKU Yes Boolean

showSocialShare Yes Boolean

showUpdate Yes Boolean

specifications No
XML
Locale

Localized description.

specificationsName No
XML
Locale

Override specifications description name.

startDate No DateTime The start date when the product is available for purchase.

stopDate No DateTime The stop date when the product is no longer available for purchase.

summary No
XML
Locale

Localized description.

terms No
XML
Locale

Localized description.

termsName No
XML
Locale

Override terms description name.

urlName No
XML
Locale

Localized URL name for SEO.

Return Data

Same as GetActiveProduct service return data.

UpdateProduct

This service is used to update a Product object.

Request Parameters

Node Required
Data
Type

Description

allowInternetOrder Yes Boolean Allow taking orders over the Internet.

allowPhoneOrder Yes Boolean Allow taking order over the phone.

allowProductReview Yes Boolean Allow users to write review for this product.

availabilityRule No XML Rule
The rule to describe the conditions when the product can be
purchased.

buyingGuide No
XML
Locale

Localized description.

buyingGuideName No
XML
Locale

Override buying guide description name.

displayOrder Yes Integer Sort order for display.

displayTemplate No String The associated display template.

dynamicFormCode No
XML
Code

Custom HTML or input form elements.

extension No XML Additional data in XML.

faq No
XML
Locale

Localized description.

faqName No
XML
Locale

Override FAQ description name.

featured Yes Boolean Localized description.

metaDescription No
XML
Locale

Localized meta description.

metaKeywords No
XML
Locale

Localized meta keywords.

name Yes
XML
Locale

Localized name.

overview No
XML
Locale

Localized description.

overviewName No
XML
Locale

Override overview description name.

pageTitle No
XML
Locale

Localized page title.

productDetailUrl No String
Specify a custom product detail page for this product or set to empty
or null to use the default product detail page. Enter a valid Tab ID
number for the page.

productID Yes Integer The object identifier.

productKey Yes String
A unique key that can be used to uniquely identify this object. This
could be a short meaningful text or simply a GUID.

productType Yes Integer The type of product (Regular = 1).

published Yes Boolean If product should be published and visible by end users.

redirectUrl No String URL or Tab ID number.

sellerID No Integer Indicate if this product belongs to a seller.

showAddToCart Yes Boolean

showAddToWishList Yes Boolean

showBuyNow Yes Boolean

showInventory Yes Boolean

showMSRP Yes Boolean

showPrice Yes Boolean

showQuantity Yes Boolean

showRewardPoints Yes Boolean

showSavings Yes Boolean

showSeeDetails Yes Boolean

showSKU Yes Boolean

showSocialShare Yes Boolean

showUpdate Yes Boolean

specifications No
XML
Locale

Localized description.

specificationsName No
XML
Locale

Override specifications description name.

startDate No DateTime The start date when the product is available for purchase.

stopDate No DateTime The stop date when the product is no longer available for purchase.

summary No
XML
Locale

Localized description.

terms No
XML
Locale

Localized description.

termsName No
XML
Locale

Override terms description name.

urlName No
XML
Locale

Localized URL name for SEO.

Return Data

Same as GetActiveProduct service return data.

ProductAttribute
A ProductAttribute is the attribute value defined for a product or product variant usually seen under the specifications tab in
the product detail page.

DeleteProductAttribute

This service is used to delete a ProductAttribute object.

Request Parameters

Node Required Data Type Description

productAttributeID Yes Integer The object identifier.

Return Data

None

GetProductAttribute

This service is used to query the ProductAttribute object.

Request Parameters

Node Required Data Type Description

productAttributeID Yes Integer The object identifier.

Return Data

Node Data Type Description

productAttribute XML Container node.

 booleanValue Boolean Boolean type value.

 createDate DateTime Creation date.

 decimalValue Decimal Decimal type value.

 integerValue Integer Integer type value.

productAttributeDefinitionID

Integer The ProductAttributeDefinition object identifier.

 productAttributeID Integer The object identifier.

 productID Integer The Product object identifier if attribute belongs to product.

 productVariantID Integer
The ProductVariant object identifier if attribute belongs to product
variant.

 selectionValue String Pipe delimited list of integer selection values.

 stringValue
XML
Locale

Localized string type value.

 updateDate DateTime Update date.

GetProductAttributesByProduct

This service is used to get all the ProductAttribute objects belonging to the product.

Request Parameters

Node Required Data Type Description

productID Yes Integer The Product object identifier.

Return Data

Node
Data
Type

Description

productAttributes XML Container node

productAttribute

XML
Zero or more productAttribute nodes with same data structure as GetProductAttribute
service return data.

GetProductAttributesByProductVariant

This service is used to get all the ProductAttribute objects belonging to the product variant.

Request Parameters

Node Required Data Type Description

productVariantID Yes Integer The ProductVariant object identifier.

Return Data

Node
Data
Type

Description

productAttributes XML Container node

productAttribute

XML
Zero or more productAttribute nodes with same data structure as GetProductAttribute
service return data.

InsertProductAttribute

This service is used to create a new ProductAttribute object.

Request Parameters

Node Required
Data
Type

Description

booleanValue No Boolean
Boolean type value. If you specify a value here, you must not
specify the decimalValue, integerValue, selectionValue or
stringValue.

decimalValue No Decimal
Decimal type value. If you specify a value here, you must not
specify the booleanValue, integerValue, selectionValue or
stringValue.

integerValue No Integer
Integer type value. If you specify a value here, you must not
specify the booleanValue, decimalValue, selectionValue or
stringValue.

productAttributeDefinitionID Yes Integer The ProductAttributeDefinition object identifier.

productID No Integer
The Product object identifier if attribute belongs to product. If
you specify the productID, you must not specify the
productVariantID.

productVariantID No Integer
The ProductVariant object identifier if attribute belongs to
product variant. If you specify the productVariantID, you must
not specify the productID.

selectionValue No String

Pipe delimited list of integer selection values. Value must
correspond to the possible
ProductAttributeDefinitionSelectionID values. If you specify a
value here, you must not specify the booleanValue,
decimalValue, integerValue or stringValue.

stringValue No
XML
Locale

Localized string type value. If you specify a value here, you
must not specify the booleanValue, decimalValue, integerValue
or selectionValue.

Return Data

Same as GetProductAttribute service return data.

ProductAttributeDefinition
A ProductAttributeDefinition is used to describe the properties of a product attribute.

GetProductAttributeDefinition

This service is used to query the ProductAttributeDefinition object.

Request Parameters

Node Required Data Type Description

productAttributeDefinitionID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

productAttributeDefinition XML

 comparable Boolean Determines if this attribute type can be used for product comparison.

 createdDate DateTime

 description
XML
Locale

 displayOrder Integer

 filterable Boolean Product list can filter by this attribute type.

 helpText
XML
Locale

Help displayed in tooltip.

 name
XML
Locale

 portalID Integer

 productAttributeDefinitionID Integer The object identifier.

productAttributeDefinitionKey

String
A unique key that can be used to uniquely identify this object. This could
be a short meaningful text or simply a GUID.

 productAttributeGroupID Integer The attribute type belongs to a ProductAttributeGroup.

 productAttributeType Integer Boolean = 1,Integer = 2, Decimal = 3, String = 4, Selection = 5

 published Boolean

 searchable Boolean Product search can index this attribute.

 stepSize Decimal The incremental change for decimal attribute type input.

 updateDate DateTime

GetProductAttributeDefinitions

This service is used to query all the ProductAttributeDefinition objects.

Request Parameters

None

Return Data

Node
Data
Type

Description

productAttributeDefinitions XML Container node

 productAttributeDefinition XML
Zero or more ProductAttributeDefinition nodes with same data structure as
GetProductAttributeDefinition service return data.

ProductAttributeGroup
A ProductAttributeGroup is used to group ProductAttributeDefinitions.

GetProductAttributeGroup

This service is used to query the ProductAttributeGroup object.

Request Parameters

Node Required Data Type Description

productAttributeGroupID Yes Integer The object identifier.

Return Data

Node Data Type Description

productAttributeGroup XML

 createDate DateTime

 description XML Locale

 displayOrder Integer

 name XML Locale

 portalID Integer

 productAttributeGroupID Integer The object identifier.

 updateDate DateTime

GetProductAttributeGroups

This service is used to query all the ProductAttributeGroup objects.

Request Parameters

None

Return Data

Node
Data
Type

Description

productAttributeGroups XML Container node

productAttributeGroup

XML
Zero or more ProductAttributeGroup nodes with same data structure as
GetProductAttributeGroup service return data.

ProductCategory
ProductCategory is the relationship that joins the Product to the Category object.

DeleteProductCategory

This service is used to delete a ProductCategory object.

Request Parameters

Node Required Data Type Description

productCategoryID Yes Integer The object identifier.

Return Data

None

GetProductCategory

This service is used to query the ProductCategory object.

Request Parameters

Node Required Data Type Description

productCategoryID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

productCategory XML Container node.

 categoryID Integer The Category object identifier.

 createDate DateTime Creation date.

 defaultCategory Boolean

Specify if this is the default category association for this product. The default
category is shown on the breadcrumb if customer arrived on the product detail
page without selecting a category, manufacturer, distributor or coming from a
search.

productCategoryID

Integer The object identifier.

 productID Integer The Product object identifier.

GetProductCategoriesByCategory

This service is used to get all the ProductCategory objects belonging to the category.

Request Parameters

Node Required Data Type Description

categoryID Yes Integer The Category object identifier.

Return Data

Node
Data
Type

Description

productCategories XML Container node

 productCategory XML
Zero or more productCategory nodes with same data structure as
GetProductCategory service return data.

GetProductCategoriesByPortal

This service is used to get all the ProductCategory objects belonging to the category.

Request Parameters

None

Return Data

Node
Data
Type

Description

productCategories XML Container node

 productCategory XML
Zero or more productCategory nodes with same data structure as
GetProductCategory service return data.

GetProductCategoriesByProduct

This service is used to get all the ProductCategory objects belonging to the product.

Request Parameters

Node Required Data Type Description

productID Yes Integer The Product object identifier.

Return Data

Node
Data
Type

Description

productCategories XML Container node

 productCategory XML
Zero or more productCategory nodes with same data structure as
GetProductCategory service return data.

InsertProductCategory

This service is used to create a new ProductCategory object.

Request Parameters

Node Required
Data
Type

Description

categoryID Yes Integer The Category object identifier.

defaultCategory Yes Boolean

Specify if this is the default category association for this product. The
default category is shown on the breadcrumb if customer arrived on the
product detail page without selecting a category, manufacturer, distributor
or coming from a search.

productID Yes Integer The Product object identifier.

Return Data

Same as GetProductCategory service return data.

ProductComponent
The ProductComponent is used to group the product parts in a bundled product.

DeleteProductComponent

This service is used to delete a ProductComponent object.

Request Parameters

Node Required Data Type Description

productComponentID Yes Integer The object identifier.

Return Data

None

GetActiveProductComponent

This service is used to query the ProductComponent object.

Request Parameters

Node Required Data Type Description

productComponentID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

productComponent XML Container node.

 createDate DateTime Creation date.

 displayOrder Integer Sort order for display.

 componentType Integer The type of component. Implicit = 1, Explicit = 2, Multiple = 3, Single = 4

 name
XML
Locale

Localized name.

 productComponentID Integer The object identifier.

productComponentKey

String
A unique key that can be used to uniquely identify this object. This could be a
short meaningful text or simply a GUID.

 productVariantID Integer The product variant object identifier associated to this component.

 updateDate DateTime Update date.

GetActiveProductComponentsByProductVariant

This service is used to get all the ProductComponent objects belonging to the ProductVariant.

Request Parameters

Node Required Data Type Description

productVariantID Yes Integer The ProductVariant object identifier.

Return Data

Node
Data
Type

Description

productComponents XML Container node

 productComponent XML
Zero or more productComponent nodes with same data structure as
GetActiveProductComponent service return data.

InsertProductComponent

This service is used to create a new ProductComponent object.

Request Parameters

Node Required
Data
Type

Description

displayOrder Yes Integer Sort order for display.

componentType Yes Integer
The type of component. Implicit = 1, Explicit = 2, Multiple = 3, Single
= 4

name Yes
XML
Locale

Localized name.

productComponentKey Yes String
A unique key that can be used to uniquely identify this object. This
could be a short meaningful text or simply a GUID.

productVariantID
The reference ProductVariant identifier this ProductComponent
belongs to.

Return Data

Same as GetActiveProductComponent service return data.

ProductPart
The ProductPart is used to indicate the product variant participating for sale in a bundled product.

DeleteProductPart

This service is used to delete a ProductPart object.

Request Parameters

Node Required Data Type Description

productPartID Yes Integer The object identifier.

Return Data

None

GetActiveProductPart

This service is used to query the ProductPart object.

Request Parameters

Node Required Data Type Description

productPartID Yes Integer The object identifier.

Return Data

Node Data Type Description

productPart XML Container node.

 createDate DateTime Creation date.

 defaultQuantity Integer The default quantity for the product part.

 displayOrder Integer Sort order for display.

 maxOrderQuantity Integer The maximum quantity that can be ordered in this bundle.

 minOrderQuantity Integer The minimum quantity that can be ordered in this bundle.

 modifierRule XML Rule Product part modifier.

 productComponentID Integer Reference the corresponding ProductComponent by its object identifier.

 selected Boolean Indicate if the product part is selected and participating in the bundle.

 showPrice Boolean Indicate if the price is displayed to the customer.

 showQuantity Boolean Indicate if the customer can override the quantity.

 updateDate DateTime Update date.

GetActiveProductPartsByProductComponent

This service is used to get all the ProductPart objects belonging to the ProductComponent.

Request Parameters

Node Required Data Type Description

productComponentID Yes Integer The ProductComponent object identifier.

Return Data

Node
Data
Type

Description

productParts XML Container node

productPart

XML
Zero or more productPart nodes with same data structure as GetActiveProductPart service
return data.

InsertProductPart

This service is used to create a new ProductPart object.

Request Parameters

Node Required
Data
Type

Description

defaultQuantity Yes Integer Indicate the default quantity.

displayOrder Yes Integer Sort order for display.

maxOrderQuantity No Integer The maximum quantity that can be ordered in this bundle.

minOrderQuantity No Integer The minimum quantity that can be ordered in this bundle.

modifierRule No XML Rule The product part modifier rule.

productComponentID Yes Integer
The reference ProductComponent identifier this ProductPart
belongs to.

selected Yes Boolean
Indicate if the product part is selected and participating in the
bundle.

showPrice Yes Boolean Indicate if the price is displayed to the customer.

showQuantity Yes Boolean Indicate if the customer can override the quantity.

Return Data

Same as GetActiveProductPart service return data.

ProductVariant

DeleteProductVariant

This service is used to delete a ProductVariant object.

Request Parameters

Node Required Data Type Description

productVariantID Yes Integer The object identifier.

Return Data

None

GetActiveProductVariant

This service is used to query the ProductVariant object.

Request Parameters

Node Required Data Type Description

productVariantID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

productVariant XML Container node.

 allowableOrderQuantity String

The distinct quantities you want to allow, separated by a pipe "|" delimiter.
Use a dash to denote a range of quantities. For example, if you enter
"1|3|5-7|9" in the text box, only quantities 1, 3, 5, 6, 7 and 9 will be
allowed.

 allowProductComparison Boolean Allow this variant for product comparison.

allowRecurringGroupOrders

Boolean
Allow this variant to be grouped together with other similar orders if this
variant is due for recurring.

 allowRewardsPoint Boolean Allow this variant to participate in rewards point program.

 availabilityRule XML Rule The rule to describe the conditions when the product can be purchased.

 basePrice Decimal The base price.

 bookingRule XML Rule The rule to describe booking conditions such as exclusion dates.

 buyingGuide
XML
Locale

Localized description.

 buyingGuideName
XML
Locale

Override the default buying guide description name.

 createDate DateTime Creation date.

 depth Decimal Product depth usually including packaging for shipping calculation (cm).

 displayOrder Integer Sort order for display.

 distributorID Integer The Distributor object identifier.

 distributorSKU String

 downloadFile String The URL, file or page associated to the product.

 dynamicFormCode
XML
Code

Custom HTML or input form elements.

 extension XML Additional data in XML.

 faq
XML
Locale

Localized description.

 faqName
XML
Locale

Override the default FAQ description name.

 handlingPrice Decimal Handling price may be used by handling rule.

 height Decimal Product height usually including packaging for shipping calculation (cm).

 inventory Integer Product inventory.

 inventoryEmptyBehavior

How product behaves when inventory is empty.

DisallowOrder = 1
DisableProduct = 2
AllowBackorder = 3

 inventoryUnitType Integer

Indicate how inventory is treated especially in the case of a booking
product. For regular product, the unit type should be Constant.

Constant = 1
Year = 2
Month = 3
Week = 4
Day = 5
Hour = 6

 manufacturerID Integer The Manufacturer object identifier.

 manufacturerSKU String

 maxInventory Integer The desirable max inventory to keep.

 maxOrderQuantity Integer Maximum quantity per order.

 maxOrderUnit Integer Maximum reservable units for a booking product.

 minOrderUnit Integer Minimum reservable units for a booking product.

 metaDescription
XML
Locale

Localized meta description.

 metaKeywords
XML
Locale

Localized meta keywords.

 maxBookingDate DateTime

 maxBookingTime TimeSpan

 minBookingDate DateTime

 minBookingTime TimeSpan

 minInventory Integer The desirable min inventory to keep.

 minOrderQuantity Integer Minimum quantity per order.

 modifierRule XML Rule Product modifer rule.

 msrp Decimal Manufacturer suggested retail price.

 name
XML
Locale

Localized name.

 overview
XML
Locale

Localized description.

 overviewName
XML
Locale

Override the default overview description name.

 packageType Integer
Package type for shipping calculation (Unspecified = 1, Envelope = 1000,
Box = 2000, Bag = 3000, Tube = 4000).

 pageTitle
XML
Locale

Localized page title.

 portalID Integer

 preorderInterval Integer The days to preorder a recurring order ahead of time.

 priceText
XML
Locale

Any text specified here will be shown to the customer instead of the
actual price.

 productCost Decimal The product cost.

 productID Integer The Product object identifier.

 productVariantID Integer The object identifier.

 productVariantKey String
A unique key that can be used to uniquely identify this object. This could
be a short meaningful text or simply a GUID.

 promotionRule XML Rule Product promotion rule.

 promotionStartDate DateTime Product promotion start date.

 promotionStopDate DateTime Product promotion stop date.

 published Boolean Allow product to be displayed.

 recurringInterval Integer The recurring interval.

 recurringIntervalType Integer The interval type (Day = 1, Week = 2, Month = 3, Year = 4).

 recurringMaxRepeat Integer
The number of times to repeat the recurring product. Empty indicates
repeat perpetually.

 recurringMinRepeat Integer
The minimum number of times that must be repeated before allowing
customers from cancelling future recurring orders.

 requireHandling Boolean Indicate if product requires handling.

 requireShipping Boolean Indicate if product requires shipping.

 rewardPoints Integer The custom number of rewards points to award.

 rightDefinitionID Integer
The RightDefinition identifier to issue upon purchase.If this value is set,
the customer will be issued the access right when order is paid or
completed.

 salesType Integer

Determine if product can be purchased at the listed price or must be
quoted first.

Sale = 1
Quoted = 2

 shippingCode String
Shipping code may be used by your shipping provider to classify this
package to obtain a more accurate quote.

 shippingPrice Decimal Shipping price may be used by shipping rule.

 sku String

 specifications
XML
Locale

Localized description.

 specificationsName
XML
Locale

Override the default specifications description name.

 startDate DateTime The start date when the product is available for purchase.

 startRecurringDate DateTime Initialize a different recurring start date.

 startRecurringInterval Integer Initialize a different recurring start date by interval amount.

 startRecurringIntervalType Integer The interval type (Day = 1, Week = 2, Month = 3, Year = 4).

 stopDate DateTime The stop date when the product is no longer available for purchase.

 summary
XML
Locale

Localized description.

 taxClassID Integer TaxClass object identifier.

 terms
XML
Locale

Localized description.

 termsName
XML
Locale

Override the default terms description name.

 universalProductCode String Universal product code.

 updateDate DateTime Update date.

 urlName
XML
Locale

Localized URL name for SEO.

 voucherDefinitionID Integer
If this value is set, a new voucher of this type will be automatically
generated and emailed to customer when order is paid or completed.

 warehouseID Integer Indicate if this product is stored at a warehouse.

 weight Decimal Product weight usually including packaging for shipping calculation (g).

 width Decimal Product width usually including packaging for shipping calculation (cm).

GetActiveProductVariants

This service is used to get all the ProductVariant objects belonging to the product.

Request Parameters

Node Required Data Type Description

productID Yes Integer The Product object identifier.

Return Data

Node
Data
Type

Description

productVariants XML Container node

 productVariant XML
Zero or more productVariant nodes with same data structure as
GetActiveProductVariant service return data.

GetActiveProductVariantsByPortal

This service is used to get all the ProductVariant objects by portal.

Request Parameters

None

Return Data

Node
Data
Type

Description

productVariants XML Container node

 productVariant XML
Zero or more productVariant nodes with same data structure as
GetActiveProductVariant service return data.

GetActiveProductVariantsBySku

This service is used to get all the ProductVariant objects with matching SKU.

Request Parameters

Node Required Data Type Description

sku Yes String The SKU value.

Return Data

Node
Data
Type

Description

productVariants XML Container node

 productVariant XML
Zero or more productVariant nodes with same data structure as
GetActiveProductVariant service return data.

InsertProductVariant

This service is used to create a new ProductVariant object.

Request Parameters

Node Required
Data
Type

Description

allowableOrderQuantity No String

The distinct quantities you want to allow, separated by a
pipe "|" delimiter. Use a dash to denote a range of
quantities. For example, if you enter "1|3|5-7|9" in the text
box, only quantities 1, 3, 5, 6, 7 and 9 will be allowed.

allowProductComparison Yes Boolean Allow this variant for product comparison.

allowRecurringGroupOrders Yes Boolean
Allow this variant to be grouped together with other similar
orders if this variant is due for recurring.

allowRewardsPoint Yes Boolean Allow this variant to participate in rewards point program.

availabilityRule No XML Rule
The rule to describe the conditions when the product can be
purchased.

basePrice Yes Decimal The base price.

bookingRule No XML Rule
The rule to describe booking conditions such as exclusion
dates.

buyingGuide No
XML
Locale

Localized description.

buyingGuideName No
XML
Locale

Override the default buying guide description name.

depth Yes Decimal
Product depth usually including packaging for shipping
calculation (cm).

displayOrder Yes Integer Sort order for display.

distributorID No Integer The Distributor object identifier.

distributorSKU No String

downloadFile No String The URL, file or page associated to the product.

dynamicFormCode No
XML
Code

Custom HTML or input form elements.

extension No XML Additional data in XML.

faq No
XML
Locale

Localized description.

faqName No
XML
Locale

Override the default FAQ description name.

handlingPrice Yes Decimal Handling price may be used by handling rule.

height Yes Decimal
Product height usually including packaging for shipping
calculation (cm).

inventory No Integer Product inventory.

inventoryEmptyBehavior Yes Integer

How product behaves when inventory is empty.

DisallowOrder = 1
DisableProduct = 2
AllowBackorder = 3

inventoryUnitType Yes Integer

Indicate how inventory is treated especially in the case of a
booking product. For regular product, the unit type should
be Constant.

Constant = 1
Year = 2
Month = 3
Week = 4
Day = 5
Hour = 6

manufacturerID No Integer The Manufacturer object identifier.

manufacturerSKU No String

maxBookingDate No DateTime

maxBookingTime No TimeSpan

minBookingDate No DateTime

minBookingTime No TimeSpan

maxInventory No Integer The desirable max inventory to keep.

maxOrderQuantity No Integer Maximum quantity per order.

maxOrderUnit No Integer Maximum reservable units for a booking product.

minOrderUnit No Integer Minimum reservable units for a booking product.

metaDescription No
XML
Locale

Localized meta description.

metaKeywords No
XML
Locale

Localized meta keywords.

minInventory No Integer The desirable min inventory to keep.

minOrderQuantity No Integer Minimum quantity per order.

modifierRule No XML Rule Product modifer rule.

msrp No Decimal Manufacturer suggested retail price.

name No
XML
Locale

Localized name.

overview No
XML
Locale

Localized description.

overviewName No
XML
Locale

Override the default overview description name.

packageType Yes Integer
Package type for shipping calculation (Unspecified = 1,
Envelope = 1000, Box = 2000, Bag = 3000, Tube = 4000).

pageTitle No
XML
Locale

Localized page title.

preorderInterval Yes Integer The days to preorder a recurring order ahead of time.

priceText No
XML
Locale

Any text specified here will be shown to the customer
instead of the actual price.

productCost No Decimal The product cost.

productID Yes Integer The Product object identifier.

productVariantKey Yes String
A unique key that can be used to uniquely identify this
object. This could be a short meaningful text or simply a
GUID.

promotionRule No XML Rule Product promotion rule.

promotionStartDate No DateTime Product promotion start date.

promotionStopDate No DateTime Product promotion stop date.

published Yes Boolean Allow product to be displayed.

recurringInterval Yes Integer The recurring interval. A zero value indicates non-recurring.

recurringIntervalType Yes Integer The interval type (Day = 1, Week = 2, Month = 3, Year = 4).

recurringMaxRepeat No Integer
The number of times to repeat the recurring product. Empty
indicates repeat perpetually.

recurringMinRepeat No Integer
The minimum number of times that must be repeated before
allowing customers from cancelling future recurring orders.

requireHandling Yes Boolean Indicate if product requires handling.

requireShipping Yes Boolean Indicate if product requires shipping.

rewardPoints No Integer The custom number of rewards points to award.

rightDefinitionID No Integer
The RightDefinition identifier to issue upon purchase.If this
value is set, the customer will be issued the access right
when order is paid or completed.

salesType Yes Integer

Determine if product can be purchased at the listed price or
must be quoted first.

Sale = 1
Quoted = 2

shippingCode No String
Shipping code may be used by your shipping provider to
classify this package to obtain a more accurate quote.

shippingPrice Yes Decimal Shipping price may be used by shipping rule.

sku No String

specifications No
XML
Locale

Localized description.

specificationsName No
XML
Locale

Override the default specifications description name.

startDate No DateTime The start date when the product is available for purchase.

startRecurringDate No DateTime Initialize a different recurring start date.

startRecurringInterval Yes Integer Initialize a different recurring start date by interval amount.

startRecurringIntervalType Yes Integer The interval type (Day = 1, Week = 2, Month = 3, Year = 4).

stopDate No DateTime
The stop date when the product is no longer available for
purchase.

summary No
XML
Locale

Localized description.

taxClassID No Integer TaxClass object identifier.

terms No XML
Locale

Localized description.

termsName No
XML
Locale

Override the default terms description name.

universalProductCode No String Universal product code.

urlName No
XML
Localized

Localized URL name for SEO.

voucherDefinitionID No Integer
If this value is set, a new voucher of this type will be
automatically generated and emailed to customer when
order is paid or completed.

warehouseID No Integer Indicate if this product is stored at a warehouse.

weight Yes Decimal
Product weight usually including packaging for shipping
calculation (g).

width Yes Decimal
Product width usually including packaging for shipping
calculation (cm).

Return Data

Same as GetActiveProductVariant service return data.

UpdateProductVariant

This service is used to update a ProductVariant object.

Request Parameters

Node Required
Data
Type

Description

allowableOrderQuantity No String

The distinct quantities you want to allow, separated by a
pipe "|" delimiter. Use a dash to denote a range of
quantities. For example, if you enter "1|3|5-7|9" in the text
box, only quantities 1, 3, 5, 6, 7 and 9 will be allowed.

allowProductComparison Yes Boolean Allow this variant for product comparison.

allowRecurringGroupOrders Yes Boolean
Allow this variant to be grouped together with other similar
orders if this variant is due for recurring.

allowRewardsPoint Yes Boolean Allow this variant to participate in rewards point program.

availabilityRule No XML Rule
The rule to describe the conditions when the product can be
purchased.

basePrice Yes Decimal The base price.

bookingRule No XML Rule
The rule to describe booking conditions such as exclusion
dates.

buyingGuide No
XML
Locale

Localized description.

buyingGuideName No
XML
Locale

Override the default buying guide description name.

depth Yes Decimal
Product depth usually including packaging for shipping
calculation (cm).

displayOrder Yes Integer Sort order for display.

distributorID No Integer The Distributor object identifier.

distributorSKU No String

downloadFile No String The URL, file or page associated to the product.

dynamicFormCode No
XML
Code

Custom HTML or input form elements.

extension No XML Additional data in XML.

faq No
XML
Locale

Localized description.

faqName No
XML
Locale

Override the default FAQ description name.

handlingPrice Yes Decimal Handling price may be used by handling rule.

height Yes Decimal
Product height usually including packaging for shipping
calculation (cm).

inventory No Integer Product inventory.

inventoryEmptyBehavior Yes Integer

How product behaves when inventory is empty.

DisallowOrder = 1
DisableProduct = 2
AllowBackorder = 3

inventoryUnitType Yes Integer

Indicate how inventory is treated especially in the case of a
booking product. For regular product, the unit type should
be Constant.

Constant = 1
Year = 2
Month = 3
Week = 4
Day = 5
Hour = 6

manufacturerID No Integer The Manufacturer object identifier.

manufacturerSKU No String

maxBookingDate No DateTime

maxBookingTime No TimeSpan

minBookingDate No DateTime

minBookingTime No TimeSpan

maxInventory No Integer The desirable max inventory to keep.

maxOrderQuantity No Integer Maximum quantity per order.

maxOrderUnit No Integer Maximum reservable units for a booking product.

minOrderUnit No Integer Minimum reservable units for a booking product.

metaDescription No
XML
Locale

Localized meta description.

metaKeywords No
XML
Locale

Localized meta keywords.

minInventory No Integer The desirable min inventory to keep.

minOrderQuantity No Integer Minimum quantity per order.

modifierRule No XML Rule Product modifer rule.

msrp No Decimal Manufacturer suggested retail price.

name No
XML
Locale

Localized name.

overview No
XML
Locale

Localized description.

overviewName No
XML
Locale

Override the default overview description name.

packageType Yes Integer
Package type for shipping calculation (Unspecified = 1,
Envelope = 1000, Box = 2000, Bag = 3000, Tube = 4000).

pageTitle No
XML
Locale

Localized page title.

preorderInterval Yes Integer The days to preorder a recurring order ahead of time.

priceText No
XML
Locale

Any text specified here will be shown to the customer
instead of the actual price.

productCost No Decimal The product cost.

productID Yes Integer The Product object identifier.

productVariantID Yes Integer The object identifier.

productVariantKey Yes String
A unique key that can be used to uniquely identify this
object. This could be a short meaningful text or simply a
GUID.

promotionRule No XML Rule Product promotion rule.

promotionStartDate No DateTime Product promotion start date.

promotionStopDate No DateTime Product promotion stop date.

published Yes Boolean Allow product to be displayed.

recurringInterval Yes Integer The recurring interval. A zero value indicates non-recurring.

recurringIntervalType Yes Integer The interval type (Day = 1, Week = 2, Month = 3, Year = 4).

recurringMaxRepeat No Integer
The number of times to repeat the recurring product. Empty
indicates repeat perpetually.

recurringMinRepeat No Integer
The minimum number of times that must be repeated before
allowing customers from cancelling future recurring orders.

requireHandling Yes Boolean Indicate if product requires handling.

requireShipping Yes Boolean Indicate if product requires shipping.

rewardPoints No Integer The custom number of rewards points to award.

rightDefinitionID No Integer
The RightDefinition identifier to issue upon purchase.If this
value is set, the customer will be issued the access right
when order is paid or completed.

salesType Yes Integer

Determine if product can be purchased at the listed price or
must be quoted first.

Sale = 1
Quoted = 2

shippingCode No String
Shipping code may be used by your shipping provider to
classify this package to obtain a more accurate quote.

shippingPrice Yes Decimal Shipping price may be used by shipping rule.

sku No String

specifications No
XML
Locale

Localized description.

specificationsName No
XML
Locale

Override the default specifications description name.

startDate No DateTime The start date when the product is available for purchase.

startRecurringDate No DateTime Initialize a different recurring start date.

startRecurringInterval Yes Integer Initialize a different recurring start date by interval amount.

startRecurringIntervalType Yes Integer The interval type (Day = 1, Week = 2, Month = 3, Year = 4).

stopDate No DateTime
The stop date when the product is no longer available for
purchase.

summary No
XML
Locale

Localized description.

taxClassID No Integer TaxClass object identifier.

terms No XML
Locale

Localized description.

termsName No
XML
Locale

Override the default terms description name.

universalProductCode No String Universal product code.

urlName No
XML
Locale

Localized URL name for SEO.

voucherDefinitionID No Integer
If this value is set, a new voucher of this type will be
automatically generated and emailed to customer when
order is paid or completed.

warehouseID No Integer Indicate if this product is stored at a warehouse.

weight Yes Decimal
Product weight usually including packaging for shipping
calculation (g).

width Yes Decimal
Product width usually including packaging for shipping
calculation (cm).

Return Data

Same as GetActiveProductVariant service return data.

ProductVariantGroup
The ProductVariantGroup is used to group related variants such as Size or Color.

DeleteProductVariantGroup

This service is used to delete a ProductVariantGroup object.

Request Parameters

Node Required Data Type Description

productVariantGroupID Yes Integer The object identifier.

Return Data

None

GetProductVariantGroup

This service is used to query the ProductVariantGroup object.

Request Parameters

Node Required Data Type Description

productVariantGroupID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

productVariantGroup XML Container node.

 createDate DateTime Creation date.

 displayOrder Integer Sort order for display.

 fieldType Integer
The type of control to display. DropDownList = 1, RadioButtonList = 2,
ColorPicker = 3, ImageSwatch = 4

 helpText
XML
Locale

Localized help text.

 name
XML
Locale

Localized name.

 productID Integer The reference Product identifier this product variant group belongs to.

 productVariantGroupID Integer The object identifier.

productVariantGroupKey

String
A unique key that can be used to uniquely identify this object. This could be a
short meaningful text or simply a GUID.

 updateDate DateTime Update date.

GetProductVariantGroups

This service is used to get all the ProductVariantGroup objects belonging to the Product.

Request Parameters

Node Required Data Type Description

productID Yes Integer The Product object identifier.

Return Data

Node
Data
Type

Description

productVariantGroups XML Container node

productVariantGroup

XML
Zero or more productVariantGroup nodes with same data structure as
GetProductVariantGroup service return data.

InsertProductVariantGroup

This service is used to create a new ProductVariantGroup object.

Request Parameters

Node Required
Data
Type

Description

displayOrder Yes Integer Sort order for display.

fieldType Yes Integer
The type of control to display. DropDownList = 1, RadioButtonList
= 2, ColorPicker = 3, ImageSwatch = 4

helpText No
XML
Locale

Localized help text.

name Yes
XML
Locale

Localized name.

productID Yes Integer
The reference Product identifier this product variant group belongs
to.

productVariantGroupKey Yes String
A unique key that can be used to uniquely identify this object. This
could be a short meaningful text or simply a GUID.

Return Data

Same as GetProductVariantGroup service return data.

UpdateProductVariantGroup

This service is used to update a ProductVariantGroup object.

Request Parameters

Node Required
Data
Type

Description

displayOrder Yes Integer Sort order for display.

fieldType Yes Integer
The type of control to display. DropDownList = 1, RadioButtonList
= 2, ColorPicker = 3, ImageSwatch = 4

helpText No
XML
Locale

Localized help text.

name Yes
XML
Locale

Localized name.

productID Yes Integer
The reference Product identifier this product variant group belongs
to.

productVariantGroupID Yes Integer The object identifier.

productVariantGroupKey Yes String
A unique key that can be used to uniquely identify this object. This
could be a short meaningful text or simply a GUID.

Return Data

Same as GetProductVariantGroup service return data.

ProductVariantGroupOption
The ProductVariantGroupOption is the individual selectable options in a product variant group such as Small or Blue.

DeleteProductVariantGroupOption

This service is used to delete a ProductVariantGroupOption object.

Request Parameters

Node Required Data Type Description

productVariantGroupOptionID Yes Integer The object identifier.

Return Data

None

GetProductVariantGroupOption

This service is used to query the ProductVariantGroupOption object.

Request Parameters

Node Required Data Type Description

productVariantGroupOptionID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

productVariantGroupOption XML Container node.

 colorCode String The color code used if this group option is a color swatch type.

 createDate DateTime Creation date.

 displayOrder Integer Sort order for display.

 imageData String
The image data in Base64 encoding if this group option is an image
swatch type.

 imageFile String
The file name saved to disk if this group option is an image swatch
type.

 name
XML
Locale

Localized name.

 productVariantGroupID Integer
The reference ProductVariantGroup identifier this product variant
group option belongs to.

 productVariantGroupOptionID Integer The object identifier.

productVariantGroupOptionKey String
A unique key that can be used to uniquely identify this object. This
could be a short meaningful text or simply a GUID.

 updateDate DateTime Update date.

GetProductVariantGroupOptions

This service is used to get all the ProductVariantGroupOption objects belonging to the ProductVariantGroup.

Request Parameters

Node Required Data Type Description

productVariantGroupID Yes Integer The ProductVariantGroup object identifier.

Return Data

Node
Data
Type

Description

productVariantGroupOptions XML Container node

 productVariantGroupOption XML
Zero or more productVariantGroupOption nodes with same data structure as
GetProductVariantGroupOption service return data.

InsertProductVariantGroupOption

This service is used to create a new ProductVariantGroupOption object.

Request Parameters

Node Required
Data
Type

Description

colorCode No String
The color code used if this group option is a color swatch
type.

displayOrder Yes Integer Sort order for display.

imageData No String
The image data in Base64 encoding if this group option is
an image swatch type.

imageFile No String
The file name saved to disk if this group option is an image
swatch type.

name Yes
XML
Locale

Localized name.

productVariantGroupID Yes Integer
The reference ProductVariantGroup identifier this product
variant group belongs to.

productVariantGroupOptionKey Yes String
A unique key that can be used to uniquely identify this
object. This could be a short meaningful text or simply a
GUID.

Return Data

Same as GetProductVariantGroupOption service return data.

UpdateProductVariantGroupOption

This service is used to update a ProductVariantGroupOption object.

Request Parameters

Node Required
Data
Type

Description

colorCode No String

displayOrder Yes Integer Sort order for display.

helpText No
XML
Locale

Localized help text.

imageData No String
The image data in Base64 encoding if this group option is
an image swatch type.

imageFile No String
The file name saved to disk if this group option is an image
swatch type.

name Yes
XML
Locale

Localized name.

productVariantGroupID Yes Integer
The reference ProductVariantGroup identifier this product
variant group belongs to.

productVariantGroupOptionID Yes Integer The object identifier.

productVariantGroupOptionKey Yes String
A unique key that can be used to uniquely identify this
object. This could be a short meaningful text or simply a
GUID.

Return Data

Same as GetProductVariantGroupOption service return data.

ProductVariantOption
The ProductVariantOption is the association between the ProductVariant and the individual selectable options in a
ProductVariantGroupOption.

DeleteProductVariantOption

This service is used to delete a ProductVariantOption object.

Request Parameters

Node Required Data Type Description

productVariantOptionID Yes Integer The object identifier.

Return Data

None

GetProductVariantOption

This service is used to query the ProductVariantOption object.

Request Parameters

Node Required Data Type Description

productVariantOptionID Yes Integer The object identifier.

Return Data

Node Data Type Description

productVariantOption XML Container node.

 createDate DateTime Creation date.

 productVariantGroupOptionID Integer The reference ProductVariantGroupOption identifier.

 productVariantID Integer The reference ProductVariant identifier.

 productVariantOptionID Integer The object identifier.

 updateDate DateTime Update date.

GetProductVariantOptionsByProductVariant

This service is used to get all the ProductVariantOption objects belonging to the ProductVariant.

Request Parameters

Node Required Data Type Description

productVariantID Yes Integer The ProductVariant object identifier.

Return Data

Node
Data
Type

Description

productVariantOptions XML Container node

productVariantOption

XML
Zero or more productVariantOption nodes with same data structure as
GetProductVariantOption service return data.

GetProductVariantOptionsByProductVariantGroupOption

This service is used to get all the ProductVariantOption objects associated with the ProductVariantGroupOption.

Request Parameters

Node Required Data Type Description

productVariantGroupOptionID Yes Integer The ProductVariantGroupOption object identifier.

Return Data

Node
Data
Type

Description

productVariantOptions XML Container node

productVariantOption

XML
Zero or more productVariantOption nodes with same data structure as
GetProductVariantOption service return data.

InsertProductVariantOption

This service is used to create a new ProductVariantOption object.

Request Parameters

Node Required Data Type Description

productVariantGroupOptionID Yes Integer The reference ProductVariantGroupOption identifier.

 productVariantID Yes Integer The reference ProductVariant identifier.

Return Data

Same as GetProductVariantOption service return data.

RecurringSalesOrder
The RecurringSalesOrder controls the repeat of sales orders.

GetRecurringSalesOrder

This service is used to query the RecurringSalesOrder object.

Request Parameters

Node Required Data Type Description

recurringSalesOrderID Yes Integer The object identifier.

Return Data

Node Data Type Description

recurringSalesOrder XML Container node.

 adminNotes String Notes visible to the store administrator only.

 createDate DateTime Creation date.

 cultureCode String The culture code.

 dynamicFormResult XML The result collected from custom fields.

 maxRepeat Integer The number of times this recurring order is allowed to repeat.

 nextRecurringDate DateTime The next recurring date.

 originalSalesOrderID Integer The associated SalesOrder.

 portalID Integer

 productVariantID Integer The ProductVariant object identifier.

 quantity Integer

 recurringSalesOrderID Integer The object identifier.

 repeatCount Integer The number of times this recurring order has repeated.

 sellerID Integer Indicates if this object belongs to a seller.

 shippingCity String

 shippingCompany String

 shippingCountryCode String

 shippingCountryName String

 shippingEmail String

 shippingFirstName String

 shippingLastName String

 shippingMethodID Integer ShippingMethod object identifier.

 shippingPhone String

 shippingPostalCode String

 shippingStreet String

 shippingSubdivisionCode String

 shippingSubdivisionName String

 status Integer
Recurring order status (Active = 1, Hold = 2, Invalid = 3,
Cancelled = 4)

 updateDate DateTime Update date.

 userID Integer UserID object identifier.

 userPaymentID Integer UserPayment object identifier.

GetRecurringSalesOrders

This service is used to get all the RecurringSalesOrder objects belonging to the portal.

Request Parameters

None

Return Data

Node
Data
Type

Description

recurringSalesOrders XML Container node

 recurringSalesOrder XML
Zero or more recurringSalesOrder nodes with same data structure as
GetRecurringSalesOrder service return data.

GetRecurringSalesOrdersByOriginalSalesOrder

This service is used to get all the RecurringSalesOrder objects belonging to the original sales order.

Request Parameters

Node Required Data Type Description

salesOrderID Yes Integer
The object identifier.

Return Data

Node
Data
Type

Description

recurringSalesOrders XML Container node

 recurringSalesOrder XML
Zero or more recurringSalesOrder nodes with same data structure as
GetRecurringSalesOrder service return data.

UpdateRecurringSalesOrder

This service is used to update a RecurringSalesOrder object.

Request Parameters

Node Required Data Type Description

recurringSalesOrderID Yes Integer The object identifier.

status Yes Integer
Recurring order status (Active = 1, Hold = 2, Invalid = 3,
Cancelled = 4)

Return Data

Same as GetRecurringSalesOrder service return data.

RelatedProduct
RelatedProduct is the object relationship associating two related products together.

DeleteRelatedProduct

This service is used to delete a RelatedProduct object.

Request Parameters

Node Required Data Type Description

relatedProductID Yes Integer The object identifier.

Return Data

None

GetRelatedProduct

This service is used to query the RelatedProduct object.

Request Parameters

Node Required Data Type Description

relatedProductID Yes Integer The object identifier.

Return Data

Node Data Type Description

relatedProduct XML Container node.

 createDate DateTime Creation date.

 productID Integer Product object identifier in this relation.

 relatedProductID Integer The object identifier.

 relationProductID Integer The Product object identifier related to the productID.

GetRelatedProductsByProduct

This service is used to get all the RelatedProduct objects belonging to the product.

Request Parameters

Node Required Data Type Description

productID Yes Integer The Product object identifier.

Return Data

Node
Data
Type

Description

relatedProducts XML Container node

 relatedProduct XML
Zero or more relatedProduct nodes with same data structure as GetRelatedProduct
service return data.

InsertRelatedProduct

This service is used to create a new RelatedProduct object.

Request Parameters

Node Required Data Type Description

productID Yes Integer The Product object identifier.

relationProductID Yes Integer The Product object identifier related to the Product.

Return Data

Same as GetRelatedProduct service return data.

RequiredProduct
RequiredProduct is the object relationship associating two required products together.

DeleteRequiredProduct

This service is used to delete a RequiredProduct object.

Request Parameters

Node Required Data Type Description

requiredProductID Yes Integer The object identifier.

Return Data

None

GetRequiredProduct

This service is used to query the RequiredProduct object.

Request Parameters

Node Required Data Type Description

requiredProductID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

requiredProduct XML Container node.

 createDate DateTime Creation date.

 deferDate DateTime Defer the start of the required product until the date specified.

 deferInterval Integer
Defer the start of the required product by the amount of interval time. Enter
zero to start immediately.

 deferIntervalType Integer The interval type for the deferral. Day = 1, Week = 2, Month = 3, Year = 4

 productVariantID Integer
The ProductVariant object identifier.

 published Boolean
Determine if the required product is disclosed to the customer.

 quantity

A non-zero value will match the quantity ordered (e.g. if you set a value of 2
and the customers places an order for 2 items, the total required products
will equal 4). Enter a value of 1 if you want to have a one to one match. If you
want a single required product regardless of any number of items purchased,
enter a value of 0.

 requiredProductID Integer The object identifier.

requiredProductVariantID

Integer The ProductVariant object identifier required by the productVariantID.

 updateDate DateTime

GetRequiredProductsByProductVariant

This service is used to get all the RequiredProduct objects belonging to the product.

Request Parameters

Node Required Data Type Description

productVariantID Yes Integer The ProductVariant object identifier.

Return Data

Node
Data
Type

Description

requiredProducts XML Container node

requiredProduct

XML
Zero or more requiredProduct nodes with same data structure as GetRequiredProduct
service return data.

InsertRequiredProduct

This service is used to create a new RequiredProduct object.

Request Parameters

Node Required
Data
Type

Description

deferDate

No DateTime Defer the start of the required product until the date specified.

deferInterval Yes Integer
Defer the start of the required product by the amount of interval
time. Enter zero to start immediately.

deferIntervalType Yes Integer
The interval type for the deferral. Day = 1, Week = 2, Month =
3, Year = 4

productVariantID Yes Integer The ProductVariant object identifier.

published

Yes Boolean Determine if the required product is disclosed to the customer.

quantity Yes Integer

A non-zero value will match the quantity ordered (e.g. if you set
a value of 2 and the customers places an order for 2 items, the
total required products will equal 4). Enter a value of 1 if you
want to have a one to one match. If you want a single required
product regardless of any number of items purchased, enter a
value of 0.

requiredProductVariantID Yes Integer
The ProductVariant object identifier required by the
ProductVariant.

Return Data

Same as GetRequiredProduct service return data.

Right
A Right is used to issue access rights such as license key to customer upon purchase.

GetRight

This service is used to query the Right object.

Request Parameters

Node Required Data Type Description

rightID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

right XML

 adminNotes String Administrator notes not shown to customer.

 assignedUserID Integer The right may be assigned to a user.

 code String The unique code.

 createDate DateTime

 issueDate DateTime The date when the right was first issued.

 rightDefinitionID Integer
The right definition object identifier associated with this right. The right definition is
the template that determines type of right.

 rightID Integer The object identifier.

salesOrderDetailID

Integer
The corresponding sales order detail object identifier if this right was generate from
the order.

 updateDate DateTime

GetRightByCode

This service is used to query the Right object.

Request Parameters

Node Required Data Type Description

code Yes String The right code.

Return Data

Same data structure as GetRight service return data.

GetRights

This service is used to query all the Right objects.

Request Parameters

None

Return Data

Node Data Type Description

rights XML Container node

 right XML Zero or more Right nodes with same data structure as GetRight service return data.

GetRightsByRightDefinition

This service is used to query all the Right objects.

Request Parameters

Node Required Data Type Description

rightDefinitionID Yes Integer The RightDefinition object identifier.

Return Data

Node Data Type Description

rights XML Container node

 right XML Zero or more Right nodes with same data structure as GetRight service return data.

RightDefinition
A RightDefinition is a definition template used to create Right objects.

GetRightDefinition

This service is used to query the RightDefinition object.

Request Parameters

Node Required Data Type Description

rightDefinitionID Yes Integer The object identifier.

Return Data

Node Data Type Description

rightDefinition XML

 createdDate DateTime

 description XML Locale

 name XML Locale

 portalID Integer

 rightDefinitionID Integer The object identifier of the right definition.

 rightType Integer
The type of right.
PregeneratedLicenseKey = 1

 sellerID Integer Indicate if this product belongs to a seller.

 updateDate DateTime

GetRightDefinitions

This service is used to query all the RightDefinition objects.

Request Parameters

None

Return Data

Node
Data
Type

Description

rightDefinitions XML Container node

rightDefinition

XML
Zero or more Right nodes with same data structure as GetRightDefinition service return
data.

SalesOrder
The SalesOrder object tracks Storefront sales.

GetSalesOrder

This service is used to query the SalesOrder object.

Request Parameters

Node Required Data Type Description

salesOrderID Yes Integer The object identifier.

Request Parameters

Node
Data
Type

Description

salesOrder XML Container node.

 adminNotes String Notes intended for store administrators.

 affiliateID Integer The Affiliate ID tracked to the order if it originated from a referral.

 billingCity String

 billingCompany String

 billingCountryCode String

 billingCountryName String

 billingEmail String

 billingFirstName String

 billingLastName String

 billingPhone String

 billingPostalCode String

 billingStreet String

 billingSubdivisionCode String

 billingSubdivisionName String

 businessTaxNumber String Business tax number (e.g. VAT number).

 couponCodes String Pipe delimited coupon codes.

 createDate DateTime Creation date.

 cultureCode String The display culture.

 currencyCultureCode String The currency culture.

 customerNotes
XML
Locale

Notes intended for customer.

 dynamicFormResult XML The result collected from DynamicForm.

 exchangeRate Decimal The exchange rate relative to the primary currency.

 fraudScore Integer The registered fraud score from 0 to 100 if available.

 fraudRiskGateway String The risk gateway provider.

 handlingAmount Decimal Handling amount.

 handlingDiscountAmount Decimal Handling discount.

 handlingMethodID Integer The HandlingMethod object identifier.

 handlingTaxAmount1 Decimal

 handlingTaxAmount2 Decimal

 handlingTaxAmount3 Decimal

 handlingTaxAmount4 Decimal

 handlingTaxAmount5 Decimal

 orderDate DateTime The order date.

 orderLocked Boolean
Lock the order to prevent customer from changing the order details
when resuming an incomplete order.

 origin Integer
Where the order originated (Web Checkout = 1, System Recurring =
2).

 packingMethodID Integer PackingMethod object identifier.

 parentSalesOrderID Integer The parent sales order if this order belonged in a sales order set.

 portalID Integer

 preferredUserPaymentID Integer

 purchaseOrderNumber String Purchase order number.

 rewardsPointsQualified Integer The number of rewards points earned from the purchase of this order.

 rewardsPointsRewarded Integer
The estimated number of points actually rewarded to the customer for
this order so far.

 salesOrderGUID GUID SalesOrder globally unique identifier.

 salesOrderID Integer The object identifier.

 salesOrderNumber String The order number shown to customer and printed on receipts.

 salesPaymentStatus Integer
Sales payment status (Pending = 1, Paid = 2, Cancelled = 3,
Refunded = 4).

 sellerID Integer The seller associated with this sales order.

 shippedDate DateTime The date the order is shipped, if available.

 shippingAmount Decimal

 shippingCity String

 shippingCompany String

 shippingCountryCode String

 shippingCountryName String

 shippingDiscountAmount Decimal

 shippingEmail String

 shippingFirstName String

 shippingLastName String

 shippingMethodID Integer ShippingMethod object identifier.

 shippingPackages XML The packing result.

 shippingPhone String

 shippingPostalCode String

 shippingStatus Integer
Shipping status (Not Required = 1, Not Shipped = 2, Shipped = 3,
Undeliverable = 4).

 shippingStreet String

 shippingSubdivisionCode String

 shippingSubdivisionName String

 shippingTaxAmount1 Decimal

 shippingTaxAmount2 Decimal

 shippingTaxAmount3 Decimal

 shippingTaxAmount4 Decimal

 shippingTaxAmount5 Decimal

 shippingTrackingCode String Shipping tracking code.

shippingUniversalServiceName

String
The globally unique name generated by the system that corresponds
to the shipping gateway's service name used internally to match a
real-time shipping method.

 status Integer
Sales order status (Pending = 1, Ordered = 2, Processing = 3,
Completed = 4, Cancelled = 5, Declined = 6, Incomplete = 7)

 subTotalAmount Decimal Sub-total.

 taxAmount1 Decimal

 taxAmount2 Decimal

 taxAmount3 Decimal

 taxAmount4 Decimal

 taxAmount5 Decimal

 taxDiscountAmount Decimal

 totalAmount Decimal

 updateDate DateTime Update date.

 userHostAddress String User IP address.

 userID Integer UserID object identifier.

 warehouseID Integer The warehouse associated to this sales order.

GetSalesOrderBySalesOrderNumber

This service is used to get the SalesOrder object belonging to the portal.

Request Parameters

Node Required Data Type Description

salesOrderNumber Yes String The order number shown to customer and printed on receipts.

Request Parameters

Same as GetSalesOrder service return data.

GetSalesOrders

This service is used to get all the SalesOrder objects belonging to the portal.

Request Parameters

None

Request Parameters

Node
Data
Type

Description

salesOrders XML Container node

salesOrder

XML
Zero or more salesOrder nodes with same data structure as GetSalesOrder service return
data.

GetSalesOrdersByDateRange

This service is used to get all the SalesOrder objects belonging to the portal by date range.

Request Parameters

Node Required Data Type Description

startDate Yes DateTime Start date.

stopDate Yes DateTime Stop date.

Request Parameters

Node
Data
Type

Description

salesOrders XML Container node

salesOrder

XML
Zero or more salesOrder nodes with same data structure as GetSalesOrder service return
data.

UpdateSalesOrder

This service is used to update a SalesOrder object.

Request Parameters

Node Required
Data
Type

Description

salesOrderID Yes Integer The object identifier.

salesPaymentStatus Yes Integer Pending = 1, Paid = 2, Cancelled = 3, Refunded = 4

shippingStatus Yes Integer NotRequired = 1, NotShipped = 2, Shipped = 3, Undeliverable = 4

shippingTrackingCode No String The shipping tracking code for the order. Leave empty if none.

status Yes Integer
Pending = 1, Ordered = 2, Processing = 3, Completed = 4, Cancelled
= 5, Declined = 6, Incomplete = 7

Request Parameters

Same as GetSalesOrder service return data.

SalesOrderDetail
The SalesOrderDetail object tracks individual sales items within a sales order.

GetSalesOrderDetail

This service is used to query the SalesOrderDetail object.

Request Parameters

Node Required Data Type Description

salesOrderDetailID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

salesOrderDetail XML Container node.

 adminNotes String Notes visible to the store administrator only.

 basePrice Decimal

 bookingStartDate DateTime The starting date for a booked order in UTC time zone.

 bookingStopDate DateTime The stopping date for a booked order in UTC time zone.

 createDate DateTime

 depth Decimal

 discountAmount Decimal

 dynamicFormResult XML

 handlingPrice Decimal

 height Decimal

 packageType Integer
Package type for shipping calculation (Unspecified = 1, Envelope = 1000,
Box = 2000, Bag = 3000, Tube = 4000).

parentSalesOrderDetailID

Integer
Indicates if this SalesOrderDetail item is a product part and child of a parent
SalesOrderDetail object usually in a bundled product scenario.

 price Decimal

 productCost Decimal

 productName
XML
Locale

Localized product name.

 productPartID Integer
References the ProductPart identifier usually from a bundled product
purchase.

 productVariantExtension XML

 productVariantID Integer ProductVariant object identifier.

 productVariantName
XML
Locale

Localized product variant name.

 quantity Integer

 recurringInterval Integer The recurring interval.

 recurringIntervalType Integer The interval type (Day = 1, Week = 2, Month = 3, Year = 4).

 recurringSalesOrderID Integer
The associated RecurringSalesOrder object identifier if this
SalesOrderDetail object was created from a recurring order.

 requireShipping Boolean Indicate if product requires shipping.

 salesOrderDetailID Integer The object identifier.

 salesOrderID Integer The associated SalesOrder object identifier.

 shippingPrice Decimal

 shippingStatus Integer
Shipping status (Not Required = 1, Not Shipped = 2, Shipped = 3,
Undeliverable = 4).

 sku String

 status Integer
Order detail status (Pending = 1, Ordered = 2, Processing = 3, Completed =
4, Quoted = 9)

 taxAmount1 Decimal

 taxAmount2 Decimal

 taxAmount3 Decimal

 taxAmount4 Decimal

 taxAmount5 Decimal

 updateDate DateTime Update date.

 weight Decimal

 width Decimal

GetSalesOrderDetails

This service is used to get all the SalesOrderDetail objects belonging to the SalesOrder.

Request Parameters

Node Required Data Type Description

salesOrderID Yes Integer The SalesOrder object identifier.

Return Data

Node
Data
Type

Description

salesOrderDetailDetails XML Container node

 salesOrderDetail XML
Zero or more salesOrderDetail nodes with same data structure as
GetSalesOrderDetail service return data.

UpdateSalesOrderDetail

This service is used to update a SalesOrderDetail object.

Request Parameters

Node Required Data Type Description

salesOrderDetailID Yes Integer The object identifier.

shippingStatus Yes Integer NotRequired = 1, NotShipped = 2, Shipped = 3, Undeliverable = 4

Return Data

Same as GetSalesOrderDetail service return data.

SalesPayment
The SalesPayment object tracks payments belonging to a sales order.

GetSalesPayment

This service is used to query the SalesPayment object.

Request Parameters

Node Required Data Type Description

salesPaymentID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

salesPayment XML Container node.

 amount Decimal

 city String

 company String

 countryCode String

 countryName String

 createDate DateTime

 email String

 firstName String

 lastName String

 origin Integer
The payment origin. See Payment origin types
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/payment-origin-types/rvdwkpvm/section).

 parentSalesPaymentGUID GUID The related parent payment object identifier or null.

 parentSalesPaymentID Integer The related parent payment object identifier or null.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/payment-origin-types/rvdwkpvm/section

 paymentDate DateTime

 paymentGateway String The gateway used or empty if manual transaction.

paymentGatewayResponseCode

Integer

The gateway response code. Payment Gateway Response Code
Types (http://www.revindex.com/Resources/Knowledge-
Base/Revindex-Storefront/payment-gateway-response-code-
types/rvdwkpvm/section).

 paymentMethod Integer
The payment method type. See Payment Method Types
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/payment-method-types/rvdwkpvm/section).

 paymentNumber String
Identifier associated with the payment gateway's payment profile
record.

 phone String

 postalCode String

 profileNumber String
Identifier associated with the payment gateway's payment profile
record.

 salesOrderID Integer The associated SalesOrder object identifier.

 salesPaymentGUID GUID Indicate if product requires shipping.

 salesPaymentID Integer The object identifier.

 street String

 subdivisionCode String

 subdivisionName String

 transactionType Integer
Payment transaction type. See Sales Payment Transaction Types
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/sales-payment-transaction-types/rvdwkpvm/section).

 updateDate DateTime

 userHostAddress String

GetSalesPayments

This service is used to get all the SalesPayment objects belonging to the SalesOrder.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/payment-gateway-response-code-types/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/payment-method-types/rvdwkpvm/section
http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/sales-payment-transaction-types/rvdwkpvm/section

Request Parameters

Node Required Data Type Description

salesOrderID Yes Integer The SalesOrder object identifier.

Return Data

Node
Data
Type

Description

salesPayments XML Container node

salesPayment

XML
Zero or more salesPayment nodes with same data structure as GetSalesPayment
service return data.

SalesPromotion
The SalesPromotion is used to give a discount on purchases.

DeleteSalesPromotion

This service is used to delete a SalesPromotion object.

Request Parameters

Node Required Data Type Description

salesPromotionID Yes Integer The object identifier.

Return Data

None

GetSalesPromotion

This service is used to query the Category object.

Request Parameters

Node Required Data Type Description

salesPromotionID Yes Integer The object identifier.

Return Data

Node Data Type Description

salesPromotion XML Container node.

 active Boolean Flag to indicate if promotion is active and can be used.

 createDate DateTime Creation date.

 description XML Locale Localized description.

 name XML Locale Localized name.

 portalID Integer

 promotionRule XML Rule The promotion rule.

 promotionType Integer Product = 1, SalesOrderDetail = 2, Shipping = 3, Handling = 4, Tax = 5

 runOrder Integer The execution order for this promotion among other promotions of the same type.

 startDate DateTime The start date when the promotion is valid.

 stopDate DateTime The stop date the promotion is no longer valid.

 updateDate DateTime Update date.

GetSalesPromotions

This service is used to get all the SalesPromotion objects belonging to the portal.

Request Parameters

None

Return Data

Node
Data
Type

Description

salesPromotions XML Container node

salesPromotion

XML
Zero or more salesPromotion nodes with same data structure as GetSalesPromotion
service return data.

InsertSalesPromotion

This service is used to create a new SalesPromotion object.

Request Parameters

Node Required
Data
Type

Description

active Yes Boolean Flag to indicate if promotion is active and can be used.

description No
XML
Locale

Localized description.

name Yes
XML
Locale

Localized name.

promotionRule No XML Rule The promotion rule.

promotionType Yes Integer Product = 1, SalesOrderDetail = 2, Shipping = 3, Handling = 4, Tax = 5

runOrder Yes Integer
The execution order for this promotion among other promotions of the
same type.

salesPromotionID Yes Integer The object identifier.

startDate No DateTime The start date when the promotion is valid.

stopDate No DateTime The stop date the promotion is no longer valid.

Return Data

Same as GetSalesPromotion service return data.

UpdateSalesPromotion

This service is used to update a SalesPromotion object.

Request Parameters

Node Required
Data
Type

Description

active Yes Boolean Flag to indicate if promotion is active and can be used.

description No
XML
Locale

Localized description.

name Yes
XML
Locale

Localized name.

promotionRule No XML Rule The promotion rule.

promotionType Yes Integer Product = 1, SalesOrderDetail = 2, Shipping = 3, Handling = 4, Tax = 5

runOrder Yes Integer
The execution order for this promotion among other promotions of the
same type.

salesPromotionID Yes Integer The object identifier.

startDate No DateTime The start date when the promotion is valid.

stopDate No DateTime The stop date the promotion is no longer valid.

Return Data

Same as GetSalesPromotion service return data.

ShippingMethod
A ShippingMethod object is to manage shipping during checkout.

GetActiveShippingMethod

This service is used to query the ShippingMethod object.

Request Parameters

Node Required Data Type Description

shippingMethodID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

shippingMethod XML

 availabilityRule XML Rule The rule to describe the conditions when the shipping is available.

 createdDate DateTime

 displayOrder Integer

 name
XML
Locale

 portalID Integer

 rateRule XML Rule Shipping rate calculation rule.

 sellerID Integer Indicate if this object belongs to a seller.

 shippingMethodID Integer The object identifier.

 taxClassID Integer The TaxClass object identifier if this shipping method is taxable.

universalServiceName

String
The globally unique name generated by the system that corresponds to the
shipping gateway's service name used internally to match a real-time shipping
method.

 updateDate DateTime

GetActiveShippingMethods

This service is used to query all the ShippingMethod objects.

Request Parameters

None

Return Data

Node
Data
Type

Description

shippingMethods XML Container node

shippingMethod

XML
Zero or more ShippingMethod nodes with same data structure as
GetActiveShippingMethod service return data.

TaxClass
A TaxClass object is used to calculate taxes during checkout.

GetTaxClass

This service is used to query the TaxClass object.

Request Parameters

Node Required Data Type Description

taxClassID Yes Integer The object identifier.

Return Data

Node Data Type Description

taxClass XML

 createDate DateTime

 exemptionRule XML Rule Tax exemption rule.

 name XML Locale

 portalID Integer

 rateRule XML Rule Tax rate calculation rule.

 sellerID Integer The seller associated with this tax method.

 taxClassID Integer The object identifier.

 updateDate DateTime

GetTaxClasses

This service is used to query all the TaxClass objects.

Request Parameters

None

Return Data

Node
Data
Type

Description

taxClasses XML Container node

 taxClass XML
Zero or more TaxClass nodes with same data structure as GetTaxClass service return
data.

User
The following service is useful to query information about users.

GetUser

This service is used to query the User object.

Request Parameters

Node Required Data Type Description

userID Yes Integer The object identifier.

Return Data

Node Data Type Description

user XML

 affiliateID Integer

 createdByUserID Integer

 createdOnDate DateTime

 displayName String

 email String

 firstName String

 isSuperUser Boolean

 lastIPAddress String

 lastName String

 portalID Integer

 roles String

 userID Integer

 username String

GetUsers

This service is used to query all the user objects.

Request Parameters

None

Return Data

Node Data Type Description

users XML Container node

 user XML Zero or more User nodes with same data structure as GetUser service return data.

GetUsersByCreatedDate

This service is used to query all the user objects by the created date range.

Request Parameters

Node Required Data Type Description

startDate Yes DateTime

stopDate Yes DateTime

Return Data

Node Data Type Description

users XML Container node

user XML Zero or more User nodes with same data structure as GetUser service return data.

GetUsersByLastModifiedDate

This service is used to query all the user objects by the last modified date range.

Request Parameters

Node Required Data Type Description

startDate Yes DateTime

stopDate Yes DateTime

Return Data

Node Data Type Description

users XML Container node

user XML
Zero or more User nodes with same data structure as GetUser service return data.

UserPayment
The UserPayment object tracks payments belonging to a user usually associated with recurring orders.

GetUserPayment
This service is used to query the UserPayment object.

Request Parameters

Node Required Data Type Descrip�on
userPaymentID Yes Integer The object identifier.

Return Data

Node Data
Type Descrip�on

userPayment XML Container node.
 city String
 company String
 countryCode String
 countryName String
 createDate DateTime
 email String
 firstName String
 lastName String
 paymentMethod Integer The payment method type. See Payment Method Types

(http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/payment-method-types/rvdwkpvm/section).

 paymentNumber String Identifier associated with the payment gateway's payment profile record.
 phone String
 portalID Integer
 postalCode String
 profileNumber String Identifier associated with the payment gateway's payment profile record.
 street String
 subdivisionCode String
 subdivisionName String
 updateDate DateTime
 userID Integer Identifier associated with the user account.
 userPaymentID Integer The object unique identifier.

GetUserPaymentsByUser
This service is used to get all the UserPayment objects belonging to the user.

Request Parameters

Node Required Data Type Descrip�on
userID Yes Integer The user object identifier.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/payment-method-types/rvdwkpvm/section

Return Data

Node Data
Type Descrip�on

userPayments XML Container node
 userPayment XML Zero or more userPayment nodes with same data structure as GetUserPayment service

return data.

Voucher
A Voucher is a payment method often used as gift certificate, gift card, store credit, etc..

DeleteVoucher

This service is used to delete a Voucher object.

Request Parameters

Node Required Data Type Description

voucherID Yes Integer The object identifier.

Return Data

None

GetVoucher

This service is used to query the Voucher object.

Request Parameters

Node Required Data Type Description

voucherID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

voucher XML

 adminNotes String Administrator notes not shown to customer.

 amount Decimal The remaining balance in the voucher.

 assignedUserID Integer The voucher may be assigned to a user.

 code String The unique code to redeem the voucher.

 createDate DateTime

 initialAmount Decimal The initial starting amount when the voucher was created.

 issueDate DateTime The date when the voucher was first created.

 portalID Integer

salesOrderDetailID

Integer
The corresponding sales order detail object identifier if this voucher was generate
from the order.

 status Integer The status of the voucher. Inactive = 1, Active = 2, Hold = 3, Cancelled = 4

 updateDate DateTime

voucherDefinitionID

Integer The object identifier of the voucher definition.

 voucherID Integer The object identifier.

GetVoucherByCode

This service is used to query the Voucher object.

Request Parameters

Node Required Data Type Description

code Yes String The voucher code.

Return Data

Same data structure as GetVoucher service return data.

GetVouchers

This service is used to query all the Voucher objects.

Request Parameters

None

Return Data

Node Data Type Description

vouchers XML Container node

 voucher XML Zero or more Voucher nodes with same data structure as GetVoucher service return data.

GetVouchersByVoucherDefinition

This service is used to query all the Voucher objects.

Request Parameters

Node Required Data Type Description

voucherDefinitionID Yes Integer The VoucherDefinition object identifier.

Return Data

Node Data Type Description

vouchers XML Container node

 voucher XML Zero or more Voucher nodes with same data structure as GetVoucher service return data.

InsertVoucher

This service is used to create a new Voucher object.

Request Parameters

Node Required
Data
Type

Description

adminNotes No String Administrator notes not shown to customer.

amount Yes Decimal The remaining balance in the voucher.

assignedUserID No Integer The voucher may be assigned to a user.

code Yes String The unique code to redeem the voucher.

maxRedemption No Integer Max number of times the voucher can be redeemed.

salesOrderDetailID No Integer
The corresponding sales order detail object identifier if this voucher
was generate from the order.

status Yes Integer
The status of the voucher. Inactive = 1, Active = 2, Hold = 3, Cancelled
= 4

voucherDefinitionID Yes Integer The object identifier of the voucher definition.

Return Data

Same as GetVoucher service return data.

UpdateVoucher

This service is used to update a Voucher object.

Request Parameters

Node Required
Data
Type

Description

adminNotes No String Administrator notes not shown to customer.

amount Yes Decimal The remaining balance in the voucher.

assignedUserID No Integer The voucher may be assigned to a user.

code Yes String The unique code to redeem the voucher.

maxRedemption No Integer Max number of times the voucher can be redeemed.

salesOrderDetailID No Integer
The corresponding sales order detail object identifier if this voucher
was generate from the order.

status Yes Integer
The status of the voucher. Inactive = 1, Active = 2, Hold = 3, Cancelled
= 4

voucherDefinitionID Yes Integer The object identifier of the voucher definition.

voucherID Yes Integer The object identifier.

Return Data

Same as GetVoucher service return data.

VoucherDefinition
A VoucherDefinition is a definition template used to create Voucher objects.

GetVoucherDefinition

This service is used to query the VoucherDefinition object.

Request Parameters

Node Required Data Type Description

voucherDefinitionID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

voucherDefinition XML

 active Boolean Indicates if definition is valid and vouchers can be redeemed.

 amount Decimal The default amount to create in the voucher.

 createdDate DateTime

 description
XML
Locale

 expiryInterval Interval
A non-zero value indicates the voucher will expire after the amount of period from
the issue date.

 expiryIntervalType Integer Day = 1, Week = 2, Month = 3, Year = 4

 name
XML
Locale

 paymentLimitType Integer
The maximum amount that can be redeemed in a single order. Total amount = 1,
Sub total amount = 2

 portalID Integer

 startDate DateTime If non-empty, indicates the start date when voucher is redeemable.

 stopDate DateTime If non-empty, indicates the stop date when voucher is no longer redeemable.

 transferable Boolean
Indicates if the voucher can be used by any user or only by the current assigned
user.

 updateDate DateTime

voucherDefinitionID

Integer The object identifier of the voucher definition.

GetVoucherDefinitions

This service is used to query all the VoucherDefinition objects.

Request Parameters

None

Return Data

Node
Data
Type

Description

voucherDefinitions XML Container node

 voucherDefinition XML
Zero or more Voucher nodes with same data structure as GetVoucherDefinition
service return data.

Warehouse
A Warehouse object is to manage warehouses in your system.

GetActiveWarehouse

This service is used to query the Warehouse object.

Request Parameters

Node Required Data Type Description

warehouseID Yes Integer The object identifier.

Return Data

Node
Data
Type

Description

warehouse XML

 city String

 countryCode String

 countryName String

 createDate DateTime

 description
XML
Locale

 email String

 name
XML
Locale

 phone String

 portalID Integer

 postalCode String

 sellerID Integer The seller object identifier.

 street String

subdivisionCode

String

subdivisionName

String

 updateDate DateTime

 warehouseID Integer The object identifier.

 warehouseKey String
A unique key that can be used to uniquely identify this object. This could be a short
meaningful text or simply a GUID.

GetActiveWarehouses

This service is used to query all the Warehouse objects.

Request Parameters

None

Return Data

Node
Data
Type

Description

warehouses XML Container node

warehouse

XML
Zero or more Warehouse nodes with same data structure as GetActiveWarehouse service
return data.

Examples

Export order (Powershell)
Here's a simple example using Powershell to export pending orders to send for fulfillment via email.

SalesOrderExport.ps1
#
This script will export all pending orders with products belonging to
a distributor and send the CSV file using email.
It will keep track of all the order details fulfilled in a local file.
It will mark the order as shipped and completed when every order detail
has been fulfilled.
##

Configuration
##

$APIKey = '00000000-0000-0000-0000-000000000000'
$APIUrl =
'http://domain.com/DesktopModules/Revindex.Dnn.RevindexStorefront/Api/Rest/V1/ServiceHandler.ashx?
portalid=0'
$APIUsername = 'host'

Number of days to look back at orders
$BackOrderDays = -7

The distributor to match
$DistributorID = 1

$FulfillmentEmailBody = 'Order fulfillment text body'

The email(s) to send fulfillment file. Separated multiple emails by semicolon.
$FulfillmentEmailRecipient = 'vendor@localhost.com'

$FulfillmentEmailSender = 'support@localhost.com'
$FulfillmentEmailSubject = 'Order fulfillment'
$FulfillmentFileName = ('Fulfillment.' + [DateTime]::Now.ToString('yyyyMMdd') + '.txt')

$LogFileName = ('Log.' + [DateTime]::Now.ToString('yyyyMMdd') + '.txt')

$NetworkTimeout = 30000

The email(s) to notify on success/error. Separated multiple emails by semicolon.
$NotificationRecipient = 'support@localhost.com'

$NotificationSender = 'support@localhost.com'

$OrderCompletionFileName = 'OrderCompletion.txt'

$SMTPPassword = 'xxxxxx'
$SMTPServer = 'mail.localhost.com'
$SMTPUser = 'mailer'

The folder to store files, logs, etc. defaults to the current execution path
$WorkingFolder = ((Split-Path $MyInvocation.MyCommand.Path) + '\')

Functions
##

Function to help post HTTP request to web service
Function PostWebRequest([String] $url, [String] $data, [int] $timeout)
{
 $buffer = [System.Text.Encoding]::UTF8.GetBytes($data)
 [System.Net.HttpWebRequest] $webRequest = [System.Net.WebRequest]::Create($url)
 $webRequest.Timeout = $timeout
 $webRequest.Method = "POST"
 $webRequest.ContentType = "application/x-www-form-urlencoded"
 $webRequest.ContentLength = $buffer.Length;

 $requestStream = $webRequest.GetRequestStream()
 $requestStream.Write($buffer, 0, $buffer.Length)
 $requestStream.Flush()
 $requestStream.Close()

 [System.Net.HttpWebResponse] $webResponse = $webRequest.GetResponse()
 $streamReader = New-Object System.IO.StreamReader($webResponse.GetResponseStream())
 $result = $streamReader.ReadToEnd()
 return $result

1
2
3
4
5
6
7
8
9
1
01
11
21
31
41
51
61
7

1
81
92
02
12
22
32
42
52
62
72
82
93
03
13
23
33
43
53
63
73
83
94
04
14
24
34
44
54
64
74
84
95
05
15
25
35
45
55
65
75
85
96
06
16
26
36
46
56
66
76
86
97
07
17
27
37
47
57
67
77
87
98
08
18
28
38
48
58
68
78
88
99

}

Function to send email
Function SendEmail([String]$smtpServer, [String] $smtpUser, [String] $smtpPassword, [String] $sender,
[String] $recipient, [String] $subject, [String] $body, [String] $attachment)
{
 $msg = New-Object System.Net.Mail.MailMessage
 $msg.From = $sender
 $msg.ReplyTo = $sender

 foreach ($r in $recipient.Split(';'))
 {
 if ($r)
 {
 $msg.To.Add($r)
 }
 }
 $msg.subject = $subject
 $msg.body = $body

 if ($attachment -and [System.IO.File]::Exists($attachment))
 {
 $att = New-Object System.Net.Mail.Attachment($attachment)
 $msg.Attachments.Add($att)
 }

 $smtp = New-Object System.Net.Mail.SmtpClient($smtpServer)
 $smtp.Credentials = New-Object System.Net.NetworkCredential($smtpUser, $smtpPassword);
 $smtp.Send($msg)
}

Start program
##

Try
{
 # Load order completion data into array
 $OrderCompletion = @()
 if ([System.IO.File]::Exists($WorkingFolder + $OrderCompletionFileName))
 {
 $OrderCompletion = @(Import-Csv ($WorkingFolder + $OrderCompletionFileName))
 }

 # Get sales orders needing to be fulfilled
 $StartDate = [DateTime]::Now.AddDays($BackOrderDays).ToString("s")
 $StopDate = [DateTime]::Now.ToString("s")

 $xRequest = [Xml] "

1.0

$APIUsername
$APIKey

GetSalesOrdersByDateRange

$StartDate
$StopDate

"
[Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
if ($xResponse.response.code -ne '2000')
{
Throw New-Object System.InvalidOperationException("Error executing GetSalesOrdersByDateRange. Response: " +
$xResponse.response.code + ' ' + $xResponse.response.message)
}
[System.Xml.XmlElement]$salesOrders = $xResponse.SelectSingleNode('/response/return/salesOrders')
foreach ($salesOrder in $salesOrders.SelectNodes('salesOrder'))
{
Look for pending order status
if ($salesOrder.status -eq '1')
{
Query sales order details
$xRequest = [Xml] ("

1.0

$APIUsername
$APIKey

GetSalesOrderDetails

" + $salesOrder.salesOrderID + "
$StopDate

")
[Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout

09
19
29
39
49
5
9
69
79
89
91
0
0
1
0
1
1
0
2
1
0
3
1
0
4
1
0
5
1
0
6
1
0
7
1
0
8
1
0
9
1
1
0
1
1
1
1
1
2
1
1
3
1
1
4
1
1
5
1
1
6
1
1
7
1
1
8
1
1
9
1
2
0
1
2
1
1
2
2
1
2
3
1
2
4
1
2
5
1
2
6
1
2
7
1
2
8
1
2
9
1
3
0
1
3
1
1
3
2
1
3
3
1
3
4
1
3
5
1
3
6
1
3
7
1
3
8
1
3
9
1
4
0
1
4
1
1
4
2
1
4
3
1
4
4
1
4
5
1
4
6
1
4
7
1
4
8
1
4
9
1
5
0
1
5
1
1
5
2
1
5
3
1
5
4
1
5
5
1
5
6
1
5
7
1
5
8
1
5
91
6
0
1
6
1
1
6
2
1
6
3
1
6
4
1
6
5
1
6
6
1
6
7
1
6
8
1
6
9
1
7
0
1
7
1
1
7
2
1
7
3
1
7
4
1
7
5
1
7
6
1
7
7
1
7
8
1
7
9
1
81

if ($xResponse.response.code -ne '2000')
{
Throw New-Object System.InvalidOperationException("Error executing GetSalesOrderDetails. Response: " +
$xResponse.response.code + ' ' + $xResponse.response.message)
}
[System.Xml.XmlElement]$salesOrderDetails =
$xResponse.SelectSingleNode('/response/return/salesOrderDetails')
foreach ($salesOrderDetail in $salesOrderDetails.SelectNodes('salesOrderDetail'))
{
Make sure we haven't already fulfilled this sales order detail otherwise we can skip it
if (($OrderCompletion | Where-Object {$_.SalesOrderDetailID -eq $salesOrderDetail.salesOrderDetailID }))
{
continue
}
Query product info for matching distributor
$xRequest = [Xml] ("

1.0

$APIUsername
$APIKey

GetActiveProductVariant

" + $salesOrderDetail.productVariantID + "

")
[Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
if ($xResponse.response.code -ne '2000')
{
Throw New-Object System.InvalidOperationException("Error executing GetActiveProductVariant. Response: " +
$xResponse.response.code + ' ' + $xResponse.response.message)
}
$productVariant = $xResponse.response.return.productVariant
if ($productVariant.distributorID -eq $DistributorID)
{
Append data to CSV file
if (![System.IO.File]::Exists($WorkingFolder + $FulfillmentFileName))
{
Write CSV headers
('Date,SalesOrderID,SalesOrderDetailID,SKU,DistributorSKU,Quantity') >> ($WorkingFolder +
$FulfillmentFileName)
}
Append data to CSV
($salesOrder.orderDate + ',' + $salesOrder.salesOrderID + ',' + $salesOrderDetail.salesOrderDetailID + ','
+ $productVariant.sku + ',' + $productVariant.distributorSKU + ',' + $salesOrderDetail.quantity) >>
($WorkingFolder + $FulfillmentFileName)
Keep track of completed sales order details. Add order detail to our tracking array
$OrderCompletion += New-Object -TypeName PSObject -Property @{ DistributorID = $DistributorID
Date = [DateTime]::Now.ToString("s")
SalesOrderID = $salesOrder.salesOrderID
SalesOrderDetailID = $salesOrderDetail.salesOrderDetailID }
}
}
Update order status to Completed and Shipped if all sales order details have been accounted for.
$orderIsComplete = $true
foreach ($salesOrderDetail in $salesOrderDetails.SelectNodes('salesOrderDetail'))
{
if (!($OrderCompletion | Where-Object {$_.SalesOrderDetailID -eq $salesOrderDetail.salesOrderDetailID }))
{
$orderIsComplete = $false
break
}
}
if ($orderIsComplete)
{
Update order status to shipped (3) and order completed (4).
$xRequest = [Xml] ("

1.0

$APIUsername
$APIKey

UpdateSalesOrder

" + $salesOrder.salesOrderID + "
" + $salesOrder.salesPaymentStatus + "
3
4

")
[Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
if ($xResponse.response.code -ne '2000')
{
Throw New-Object System.InvalidOperationException("Error executing UpdateSalesOrder. Response: " +
$xResponse.response.code + ' ' + $xResponse.response.message)
}
Remove records from order completion tracking belonging to this order
$OrderCompletion = @($OrderCompletion | Where-Object { $_.SalesOrderID -ne $salesOrder.salesOrderID })
}
}

08
1
1
8
2
1
8
3
1
8
41
8
5
1
8
61
8
7
1
8
8
1
8
9
1
9
0
1
9
1
1
9
2
1
9
3
1
9
4
1
9
5
1
9
6
1
9
7
1
9
8
1
9
9
2
0
0
2
0
1
2
0
2
2
0
3
2
0
4
2
0
5
2
0
6
2
0
7
2
0
8
2
0
9
2
1
02
1
1
2
1
2
2
1
3
2
1
4
2
1
5
2
1
6
2
1
7
2
1
8
2
1
92
2
0
2
2
1
2
2
2
2
2
3
2
2
4
2
2
5
2
2
6
2
2
7
2
2
8
2
2
9
2
3
0
2
3
1
2
3
2
2
3
3
2
3
4
2
3
5
2
3
6
2
3
7
2
3
8
2
3
9
2
4
0
2
4
1
2
4
2
2
4
3
2
4
4
2
4
5
2
4
6
2
4
7
2
4
8
2
4
9
2
5
0
2
5
1
2
5
2
2
5
3
2
5
4
2
5
5
2
5
6
2
5
7
2
5
8
2
5
9
2
6
0
2
6
12
6
2
2
6
3
2
6
4
2
62

}
Send email to fulfill orders
if ([System.IO.File]::Exists($WorkingFolder + $FulfillmentFileName))
{
SendEmail $SMTPServer $SMTPUser $SMTPPassword $FulfillmentEmailSender $FulfillmentEmailRecipient
$FulfillmentEmailSubject $FulfillmentEmailBody ($WorkingFolder + $FulfillmentFileName)
}
Persist tracking to order completion file
$OrderCompletion | Export-Csv -NoTypeInformation ($WorkingFolder + $OrderCompletionFileName)
Log completion
([DateTime]::Now.ToString("s") + "`t" + 'Fufillment completed successfully') >> ($WorkingFolder +
$LogFileName)
Notify progress
SendEmail $SMTPServer $SMTPUser $SMTPPassword $NotificationSender $NotificationRecipient 'Fulfillment
completed successfully' 'Fulfillment completed successfully' ($WorkingFolder + $LogFileName)
}
Catch
{
Log errors
([DateTime]::Now.ToString("s") + "`t" + $_.Exception.Message) >> ($WorkingFolder + $LogFileName)
Notify error
SendEmail $SMTPServer $SMTPUser $SMTPPassword $NotificationSender $NotificationRecipient 'Fulfillment
failed' 'Fulfillment failed' ($WorkingFolder + $LogFileName)
}

56
6
2
6
7
2
6
8
2
6
9
2
7
0
2
7
12
7
2
2
7
3
2
7
4
2
7
5
2
7
62
7
7
2
7
82
7
9
2
8
0
2
8
1
2
8
2
2
8
3
2
8
4
2
8
52
8
6
2
8

Export order 2 (Powershell)
Here's a simple example using Powershell to export pending orders to send for fulfillment via email.

SalesOrderExport2.ps1
#
This script will export all pending orders with products belonging to
a distributor and send the CSV file using email.
It will mark the SalesOrderDetail object as shipped and the entire
SalesOrder as completed when every order detail has been fulfilled.
##

Configuration
##

$APIKey = '00000000-0000-0000-0000-000000000000'
$APIUrl = 'http://domain.com/DesktopModules/Revindex.Dnn.RevindexStorefront/Api/Rest/V1/ServiceHandler.ashx?
portalid=0'
$APIUsername = 'host'

Number of days to look back at orders
$BackOrderDays = -7

The distributor to match
$DistributorID = 1

$FulfillmentEmailBody = 'Order fulfillment text body'

The email(s) to send fulfillment file. Separated multiple emails by semicolon.
$FulfillmentEmailRecipient = 'vendor@localhost.com'

$FulfillmentEmailSender = 'support@localhost.com'
$FulfillmentEmailSubject = 'Order fulfillment'
$FulfillmentFileName = ('Fulfillment.' + [DateTime]::Now.ToString('yyyyMMdd') + '.txt')

$LogFileName = ('Log.' + [DateTime]::Now.ToString('yyyyMMdd') + '.txt')

$NetworkTimeout = 30000

The email(s) to notify on success/error. Separated multiple emails by semicolon.
$NotificationRecipient = 'support@localhost.com'

$NotificationSender = 'support@localhost.com'

$SMTPPassword = 'xxxxxx'
$SMTPServer = 'mail.localhost.com'
$SMTPUser = 'mailer'

The folder to store files, logs, etc. defaults to the current execution path
$WorkingFolder = ((Split-Path $MyInvocation.MyCommand.Path) + '\')

Functions
##

Function to help post HTTP request to web service
Function PostWebRequest([String] $url, [String] $data, [int] $timeout)
{
 $buffer = [System.Text.Encoding]::UTF8.GetBytes($data)
 [System.Net.HttpWebRequest] $webRequest = [System.Net.WebRequest]::Create($url)
 $webRequest.Timeout = $timeout
 $webRequest.Method = "POST"
 $webRequest.ContentType = "application/x-www-form-urlencoded"
 $webRequest.ContentLength = $buffer.Length;

 $requestStream = $webRequest.GetRequestStream()
 $requestStream.Write($buffer, 0, $buffer.Length)
 $requestStream.Flush()
 $requestStream.Close()

 [System.Net.HttpWebResponse] $webResponse = $webRequest.GetResponse()
 $streamReader = New-Object System.IO.StreamReader($webResponse.GetResponseStream())
 $result = $streamReader.ReadToEnd()
 return $result
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

Function to send email
Function SendEmail([String]$smtpServer, [String] $smtpUser, [String] $smtpPassword, [String] $sender, [String]
$recipient, [String] $subject, [String] $body, [String] $attachment)
{
 $msg = New-Object System.Net.Mail.MailMessage
 $msg.From = $sender
 $msg.ReplyTo = $sender

 foreach ($r in $recipient.Split(';'))
 {
 if ($r)
 {
 $msg.To.Add($r)
 }
 }
 $msg.subject = $subject
 $msg.body = $body

 if ($attachment -and [System.IO.File]::Exists($attachment))
 {
 $att = New-Object System.Net.Mail.Attachment($attachment)
 $msg.Attachments.Add($att)
 }

 $smtp = New-Object System.Net.Mail.SmtpClient($smtpServer)
 $smtp.Credentials = New-Object System.Net.NetworkCredential($smtpUser, $smtpPassword);
 $smtp.Send($msg)
}

Start program
##

Try
{
 # Get sales orders needing to be fulfilled
 $StartDate = [DateTime]::Now.AddDays($BackOrderDays).ToString("s")
 $StopDate = [DateTime]::Now.ToString("s")

 $xRequest = [Xml] "<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetSalesOrdersByDateRange</service>
 <parameters>
 <startDate>$StartDate</startDate>
 <stopDate>$StopDate</stopDate>
 </parameters>
 </request>"

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing GetSalesOrdersByDateRange.
Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)
 }
 [System.Xml.XmlElement]$salesOrders = $xResponse.SelectSingleNode('/response/return/salesOrders')

 foreach ($salesOrder in $salesOrders.SelectNodes('salesOrder'))
 {
 # Look for pending order status
 if ($salesOrder.status -eq '1')
 {
 # Query sales order details
 $xRequest = [Xml] ("<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetSalesOrderDetails</service>
 <parameters>
 <salesOrderID>" + $salesOrder.salesOrderID + "</salesOrderID>
 </parameters>
 </request>")

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing GetSalesOrderDetails.
Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)
 }
 [System.Xml.XmlElement]$salesOrderDetails =
$xResponse.SelectSingleNode('/response/return/salesOrderDetails')

78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

163
164

165

 foreach ($salesOrderDetail in $salesOrderDetails.SelectNodes('salesOrderDetail'))
 {
 # Make sure we haven't already fulfilled this sales order detail otherwise we can skip it
 if ($salesOrderDetail.shippingStatus -ne '2')
 {
 continue
 }

 # Query product info for matching distributor
 $xRequest = [Xml] ("<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetActiveProductVariant</service>
 <parameters>
 <productVariantID>" + $salesOrderDetail.productVariantID + "
</productVariantID>
 </parameters>
 </request>")

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing GetActiveProductVariant.
Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)
 }
 $productVariant = $xResponse.response.return.productVariant

 if ($productVariant.distributorID -eq $DistributorID)
 {
 # Append data to CSV file
 if (![System.IO.File]::Exists($WorkingFolder + $FulfillmentFileName))
 {
 # Write CSV headers
 ('Date,SalesOrderID,SalesOrderDetailID,SKU,DistributorSKU,Quantity') >> ($WorkingFolder
+ $FulfillmentFileName)
 }

 # Append data to CSV
 ($salesOrder.orderDate + ',' + $salesOrder.salesOrderID + ',' +
$salesOrderDetail.salesOrderDetailID + ',' + $productVariant.sku + ',' + $productVariant.distributorSKU + ',' +
$salesOrderDetail.quantity) >> ($WorkingFolder + $FulfillmentFileName)

 # Mark SalesOrderDetail as shipped
 $salesOrderDetail.shippingStatus = '3'

 # Update order detail shipping status to shipped (3).
 $xRequest = [Xml] ("<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>UpdateSalesOrderDetail</service>
 <parameters>
 <salesOrderDetailID>" + $salesOrderDetail.salesOrderDetailID + "
</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 </parameters>
 </request>")

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing
UpdateSalesOrderDetail. Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)
 }
 }
 }

 # Update order status to Completed and Shipped if all sales order details have been accounted for.
 $orderIsComplete = $true
 foreach ($salesOrderDetail in $salesOrderDetails.SelectNodes('salesOrderDetail'))
 {
 if ($salesOrderDetail.shippingStatus -eq '2' -or $salesOrderDetail.shippingStatus -eq '4')
 {
 $orderIsComplete = $false
 break
 }
 }

 if ($orderIsComplete)
 {
 # Update order status to shipped (3) and order completed (4).
 $xRequest = [Xml] ("<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

185
186
187
188
189
190
191
192

193
194
195
196
197
198
199
200
201
202

203
204
205
206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>UpdateSalesOrder</service>
 <parameters>
 <salesOrderID>" + $salesOrder.salesOrderID + "</salesOrderID>
 <salesPaymentStatus>" + $salesOrder.salesPaymentStatus + "
</salesPaymentStatus>
 <shippingStatus>3</shippingStatus>
 <status>4</status>
 </parameters>
 </request>")

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing UpdateSalesOrder.
Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)
 }
 }
 }
 }

 # Send email to fulfill orders
 if ([System.IO.File]::Exists($WorkingFolder + $FulfillmentFileName))
 {
 SendEmail $SMTPServer $SMTPUser $SMTPPassword $FulfillmentEmailSender $FulfillmentEmailRecipient
$FulfillmentEmailSubject $FulfillmentEmailBody ($WorkingFolder + $FulfillmentFileName)
 }

 # Log completion
 ([DateTime]::Now.ToString("s") + "`t" + 'Fufillment completed successfully') >> ($WorkingFolder +
$LogFileName)

 # Notify progress
 SendEmail $SMTPServer $SMTPUser $SMTPPassword $NotificationSender $NotificationRecipient 'Fulfillment
completed successfully' 'Fulfillment completed successfully' ($WorkingFolder + $LogFileName)
}
Catch
{
 # Log errors
 ([DateTime]::Now.ToString("s") + "`t" + $_.Exception.Message) >> ($WorkingFolder + $LogFileName)

 # Notify error
 SendEmail $SMTPServer $SMTPUser $SMTPPassword $NotificationSender $NotificationRecipient 'Fulfillment
failed' 'Fulfillment failed' ($WorkingFolder + $LogFileName)
}

251
252
253
254
255
256
257
258

259
260
261
262
263
264
265
266
267

268
269
270
271
272
273
274
275
276

277
278
279
280

281
282
283

284
285
286
287
288
289
290
291

292

Export products (Powershell)
The following simple example exports out all the products to an XML file.

BidOrBuyExport.ps1
#
This script will export all active products to a XML file.
##

Configuration
##
$APIKey = '0000000-0000-0000-0000-000000000'
$APIUrl = 'http://site.com/DesktopModules/Revindex.Dnn.RevindexStorefront/Api/Rest/V1/ServiceHandler.ashx?
portalid=0'
$APIUsername = 'host'

$Condition = 'New'

$FeedFileName = ('Feed.' + [DateTime]::Now.ToString('yyyyMMdd') + '.xml')

$Location = 'Johannesburg'

$LogFileName = ('Log.' + [DateTime]::Now.ToString('yyyyMMdd') + '.txt')

$NetworkTimeout = 30000

The email(s) to notify on success/error. Separated multiple emails by semicolon.
$NotificationRecipient = 'support@localhost.com'
$NotificationSender = 'support@localhost.com'

$ShippingOption = 'MediumShipping'

$SiteUrl = 'http://site.com'

$SMTPPassword = 'xxxxxx'
$SMTPServer = 'mail.localhost.com'
$SMTPUser = 'mailer'

The folder to store files, logs, etc. defaults to the current execution path
$WorkingFolder = ((Split-Path $MyInvocation.MyCommand.Path) + '\')

Functions
##

Function to help post HTTP request to web service
Function PostWebRequest([String] $url, [String] $data, [int] $timeout)
{
 $buffer = [System.Text.Encoding]::UTF8.GetBytes($data)
 [System.Net.HttpWebRequest] $webRequest = [System.Net.WebRequest]::Create($url)
 $webRequest.Timeout = $timeout
 $webRequest.Method = "POST"
 $webRequest.ContentType = "application/x-www-form-urlencoded"
 $webRequest.ContentLength = $buffer.Length

 $requestStream = $webRequest.GetRequestStream()
 $requestStream.Write($buffer, 0, $buffer.Length)
 $requestStream.Flush()
 $requestStream.Close()

 [System.Net.HttpWebResponse] $webResponse = $webRequest.GetResponse()
 $streamReader = New-Object System.IO.StreamReader($webResponse.GetResponseStream())
 $result = $streamReader.ReadToEnd()
 return $result
}

Function to send email
Function SendEmail([String]$smtpServer, [String] $smtpUser, [String] $smtpPassword, [String] $sender, [String]
$recipient, [String] $subject, [String] $body, [String] $attachment)
{
 $msg = New-Object System.Net.Mail.MailMessage
 $msg.From = $sender
 $msg.ReplyTo = $sender

 foreach ($r in $recipient.Split(';'))
 {
 if ($r)

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76

 {
 $msg.To.Add($r)
 }
 }
 $msg.subject = $subject
 $msg.body = $body

 if ($attachment -and [System.IO.File]::Exists($attachment))
 {
 $att = New-Object System.Net.Mail.Attachment($attachment)
 $msg.Attachments.Add($att)
 }

 $smtp = New-Object System.Net.Mail.SmtpClient($smtpServer)
 $smtp.Credentials = New-Object System.Net.NetworkCredential($smtpUser, $smtpPassword);
 $smtp.Send($msg)
}

Start program
##
Try
{
 # Create feed
 [Xml]$xFeed = [Xml] "<?xml version='1.0' encoding='utf-8'?>
<Root/>"

 $xProducts = $xFeed.CreateElement('Products')
 $xFeed.SelectSingleNode("/Root").AppendChild($xProducts)

Get categories
$xRequest = [Xml] "<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetCategories</service>
 <parameters>
 </parameters>
 </request>"

[Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing GetCategories. Response: " +
$xResponse.response.code + ' ' + $xResponse.response.message)
 }
 [System.Xml.XmlElement]$categories = $xResponse.SelectSingleNode('/response/return/categories')

Get product categories
$xRequest = [Xml] "<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetProductCategoriesByPortal</service>
 <parameters>
 </parameters>
 </request>"

[Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing GetProductCategories. Response: " +
$xResponse.response.code + ' ' + $xResponse.response.message)
 }
 [System.Xml.XmlElement]$productCategories =
$xResponse.SelectSingleNode('/response/return/productCategories')

 # Get variants
$xRequest = [Xml] "<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetActiveProductVariantsByPortal</service>
 <parameters>
 </parameters>
 </request>"

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing GetActiveProductVariantsByPortal.
Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)
 }

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

164

 [System.Xml.XmlElement]$productVariants = $xResponse.SelectSingleNode('/response/return/productVariants')

 # Get products
 $xRequest = [Xml] "<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetActiveProducts</service>
 <parameters>
 </parameters>
 </request>"

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing GetActiveProducts. Response: " +
$xResponse.response.code + ' ' + $xResponse.response.message)
 }
 [System.Xml.XmlElement]$products = $xResponse.SelectSingleNode('/response/return/products')

 foreach ($product in $products.SelectNodes('product'))
 {
 # Create feed
 $xProduct = $xFeed.CreateElement('Product')
 $xProducts.AppendChild($xProduct)

 $xProductCode = $xFeed.CreateElement('ProductCode')
 $xProductCode.InnerText = $product.productID
 $xProduct.AppendChild($xProductCode)

$xTitle = $xFeed.CreateElement('Title')
if (![String]::IsNullOrEmpty($product.name))
{
 $xTitle.InnerText = $product.name.locale.GetAttribute("en-US")
}
 $xProduct.AppendChild($xTitle)

Find first category associated with product
foreach ($productCategory in $productCategories.SelectNodes('productCategory'))
 {
if ($productCategory.productID -eq $product.productID)
{
foreach ($category in $categories.SelectNodes('category'))
 {
if ($category.categoryID -eq $productCategory.categoryID)
{
$xCategory = $xFeed.CreateElement('Category')

if (![String]::IsNullOrEmpty($category.name))
{
$xCategory.InnerText = $category.name.locale.GetAttribute("en-US")
}
$xProduct.AppendChild($xCategory)

break
}
}
break
}
}

Find product variant
foreach ($productVariant in $productVariants.SelectNodes('productVariant'))
 {
if ($productVariant.productID -eq $productVariant.productID)
{
$xPrice = $xFeed.CreateElement('Price')
$xPrice.InnerText = $productVariant.basePrice
$xProduct.AppendChild($xPrice)

$xQuantity = $xFeed.CreateElement('Quantity')
$xQuantity.InnerText = $productVariant.inventory
$xProduct.AppendChild($xQuantity)

break
}
}

$xCondition = $xFeed.CreateElement('Condition')
$xCondition.InnerText = $Condition
$xProduct.AppendChild($xCondition)

$xLocation = $xFeed.CreateElement('Location')
$xLocation.InnerText = $Location
$xProduct.AppendChild($xLocation)

$xShippingOption = $xFeed.CreateElement('ShippingOption')
$xShippingOption.InnerText = $ShippingOption
$xProduct.AppendChild($xShippingOption)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

Get galleries
$productID = $product.productID
$xRequest = [Xml] "<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetGalleriesByProduct</service>
 <parameters>
 <productID>$productID</productID>
 </parameters>
 </request>"

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing GetGalleriesByProduct. Response: " +
$xResponse.response.code + ' ' + $xResponse.response.message)
 }
 [System.Xml.XmlElement]$galleries = $xResponse.SelectSingleNode('/response/return/galleries')

Find display gallery
$xImageURL = $xFeed.CreateElement('ImageURL')
foreach ($gallery in $galleries.SelectNodes('gallery'))
 {
if ($gallery.format -eq 2)
{
if (![String]::IsNullOrEmpty($gallery.mediaFile))
{
$xImageURL.InnerText = $SiteUrl + '/DesktopModules/Revindex.Dnn.RevindexStorefront/Portals/0/Gallery/' +
$gallery.mediaFile.locale.GetAttribute("en-US")
}

break
}
}
$xProduct.AppendChild($xImageURL)

$xDescription = $xFeed.CreateElement('Description')

if (![String]::IsNullOrEmpty($product.overview))
{
$xDescription.InnerText = $product.overview.locale.GetAttribute("en-US") + " " +
$product.summary.locale.GetAttribute("en-US")
}

if (![String]::IsNullOrEmpty($product.summary))
{
$xDescription.InnerText += " " + $product.summary.locale.GetAttribute("en-US")
}

$xProduct.AppendChild($xDescription)
 }

Output file to disk
Out-File -FilePath ($WorkingFolder + $FeedFileName) -Encoding "UTF8" -InputObject $xFeed.InnerXml

 # Notify progress
 SendEmail $SMTPServer $SMTPUser $SMTPPassword $NotificationSender $NotificationRecipient 'Fulfillment
completed successfully' 'Fulfillment completed successfully' ($WorkingFolder + $LogFileName)
}
Catch
{
 # Log errors
 ([DateTime]::Now.ToString("s") + "`t" + $_.Exception.Message + "`t") >> ($WorkingFolder + $LogFileName)

 # Notify error
 SendEmail $SMTPServer $SMTPUser $SMTPPassword $NotificationSender $NotificationRecipient 'Feed failed'
'Feed failed' ($WorkingFolder + $LogFileName)
}

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

276
277
278
279
280
281
282
283
284
285
286
287

288
289
290
291
292
293
294
295
296
297
298
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315
316
317
318
319
320
321
322

323

QuickBooks export customer (Powershell)
You can use the following Powershell script to export your customers information to an IIF file suitable for importing into
your QuickBooks software.

QuickBooksCustomerExport.ps1
#
This script will export all customer information
to a QuickBooks IIF file.
##

Configuration
##
param
(
 [parameter(Mandatory = $false)][string]$APIKey = 'xxxxx-xxxxx',
 [parameter(Mandatory = $false)][string]$APIUrl =
'http://my.com/.../Revindex.Dnn.RevindexStorefront/Api/Rest/V1/ServiceHandler.ashx?portalid=0',
 [parameter(Mandatory = $false)][string]$APIUsername = 'host',
 [parameter(Mandatory = $false)][string]$OutFile = 'C:\Customers.iif',
 [parameter(Mandatory = $false)][DateTime]$StartDate = '2001-01-01',
 [parameter(Mandatory = $false)][DateTime]$StopDate = [DateTime]::Now,
 [int]$NetworkTimeout = 30000
)

Functions
##
Function to help post HTTP request to web service
Function PostWebRequest([String] $url, [String] $data, [int] $timeout)
{
 $buffer = [System.Text.Encoding]::UTF8.GetBytes($data)
 [System.Net.HttpWebRequest] $webRequest = [System.Net.WebRequest]::Create($url)
 $webRequest.Timeout = $timeout
 $webRequest.Method = "POST"
 $webRequest.ContentType = "application/x-www-form-urlencoded"
 $webRequest.ContentLength = $buffer.Length;

 $requestStream = $webRequest.GetRequestStream()
 $requestStream.Write($buffer, 0, $buffer.Length)
 $requestStream.Flush()
 $requestStream.Close()

 [System.Net.HttpWebResponse] $webResponse = $webRequest.GetResponse()
 $streamReader = New-Object System.IO.StreamReader($webResponse.GetResponseStream())
 $result = $streamReader.ReadToEnd()
 return $result
}

Start program
##
Try
{
 # We need to construct our XML request using the parameter list
 $strRequest = "<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetSalesOrdersByDateRange</service>
 <parameters>
 <startDate>$StartDate</startDate>
 <stopDate>$StopDate</stopDate>
 </parameters>
 </request>"

 # Execute the API call
 $xRequest = [Xml] $strRequest
 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Write-Host "Error executing GetSalesOrders. Response: " + $xResponse.response.code + ' ' +
$xResponse.response.message
 return
 }

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74

 [System.Xml.XmlElement]$salesOrders = $xResponse.SelectSingleNode('/response/return/salesOrders')

 $userIDs = @()

 $qbIIF = @()
 foreach ($salesOrder in $salesOrders.SelectNodes('salesOrder'))
 {
 # Only export unique users
 if ($userIDs -contains $salesOrder.userID)
 {
 continue
 }
 else
 {
 $userIDs += $salesOrder.userID
 }

 # Append data to CSV (IIF Format)
 # http://support.quickbooks.intuit.com/support/Articles/HOW12778
 # http://www.qblittlesquare.com/2011/07/import-lists-into-quickbooks-with-iif/
 $qbIIF += New-Object -TypeName PSObject -Property @{
 "!CUST" = "CUST"
 "NAME" = $salesOrder.billingLastName +", " +
$salesOrder.billingFirstName
 "BADDR1" = $salesOrder.billingStreet.Replace("`r",
"").Replace("`n", ", ")
 "BADDR2" = $salesOrder.billingCity
 "BADDR3" = $salesOrder.billingSubdivisionCode
 "BADDR4" = $salesOrder.billingCountryCode
 "BADDR5" = $salesOrder.billingPostalCode
 "SADDR1" = $salesOrder.shippingStreet.Replace("`r",
"").Replace("`n", ", ")
 "SADDR2" = $salesOrder.shippingCity
 "SADDR3" = $salesOrder.shippingSubdivisionCode
 "SADDR4" = $salesOrder.shippingCountryCode
 "SADDR5" = $salesOrder.shippingPostalCode
 "PHONE1" = $salesOrder.billingPhone
 "PHONE2" = ''
 "FAXNUM" = ''
 "EMAIL" = $salesOrder.billingEmail
 "CONT1" = ''
 "CONT2" = ''
 "CTYPE" = 'Residential'
 "TERMS" = ''
 "TAXABLE" = 'Y'
 "LIMIT" = ''
 "RESALENUM" = ''
 "REP" = ''
 "TAXITEM" = ''
 "NOTEPAD" = ''
 "SALUTATION" = ''
 "COMPANYNAME" = $salesOrder.billingCompany
 "FIRSTNAME" = $salesOrder.billingFirstName
 "MIDINIT" = ''
 "LASTNAME" = $salesOrder.billingLastName
 "CUSTFLD1" = ''
 "CUSTFLD2" = ''
 "CUSTFLD3" = ''
 "CUSTFLD4" = ''
 "CUSTFLD5" = ''
 "CUSTFLD6" = ''
 "CUSTFLD7" = ''
 "CUSTFLD8" = ''
 "CUSTFLD9" = ''
 "CUSTFLD10" = ''
 "CUSTFLD11" = ''
 "CUSTFLD12" = ''
 "CUSTFLD13" = ''
 "CUSTFLD14" = ''
 "CUSTFLD15" = ''
 }
 }

 # Persist fulfillment to file
 # Create CSV with headers and append data
 $qbIIF | Select-Object "!CUST",
 "NAME",
 "BADDR1",
 "BADDR2",
 "BADDR3",
 "BADDR4",
 "BADDR5",
 "SADDR1",
 "SADDR2",
 "SADDR3",
 "SADDR4",
 "SADDR5",
 "PHONE1",
 "PHONE2",
 "FAXNUM",

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

99

100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

 "EMAIL",
 "CONT1",
 "CONT2",
 "CTYPE",
 "TERMS",
 "TAXABLE",
 "LIMIT",
 "RESALENUM",
 "REP",
 "TAXITEM",
 "NOTEPAD",
 "SALUTATION",
 "COMPANYNAME",
 "FIRSTNAME",
 "MIDINIT",
 "LASTNAME",
 "CUSTFLD1",
 "CUSTFLD2",
 "CUSTFLD3",
 "CUSTFLD4",
 "CUSTFLD5",
 "CUSTFLD6",
 "CUSTFLD7",
 "CUSTFLD8",
 "CUSTFLD9",
 "CUSTFLD10",
 "CUSTFLD11",
 "CUSTFLD12",
 "CUSTFLD13",
 "CUSTFLD14",
 "CUSTFLD15" | Export-Csv -NoTypeInformation $OutFile
}
Catch
{
 Write-Output $_.Exception.Message
}

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

QuickBooks export sales order (Powershell)
You can use the following Powershell script to export your completed sales orders information to an IIF file suitable for
importing into your QuickBooks software.

QuickBooksSalesOrderExport.ps1
#
This script will export all completed sales order information
to a QuickBooks IIF file.
##

Configuration
##

param
(
 [parameter(Mandatory = $false)][string]$APIKey = 'xxxxxxxxx',
 [parameter(Mandatory = $false)][string]$APIUrl =
'http://my.com/.../Revindex.Dnn.RevindexStorefront/Api/Rest/V1/ServiceHandler.ashx?portalid=0',
 [parameter(Mandatory = $false)][string]$APIUsername = 'host',
 [parameter(Mandatory = $false)][string]$OutFile = 'C:\SalesOrders.iif',
 [parameter(Mandatory = $false)][DateTime]$StartDate = '2001-01-01',
 [parameter(Mandatory = $false)][DateTime]$StopDate = [DateTime]::Now,
 [string]$QBBankAccount = 'Bank account',
 [string]$QBIncomeAccount = 'Income account',
 [int]$NetworkTimeout = 30000
)

Functions
##

Function to help post HTTP request to web service
Function PostWebRequest([String] $url, [String] $data, [int] $timeout)
{
 $buffer = [System.Text.Encoding]::UTF8.GetBytes($data)
 [System.Net.HttpWebRequest] $webRequest = [System.Net.WebRequest]::Create($url)
 $webRequest.Timeout = $timeout
 $webRequest.Method = "POST"
 $webRequest.ContentType = "application/x-www-form-urlencoded"
 $webRequest.ContentLength = $buffer.Length;

 $requestStream = $webRequest.GetRequestStream()
 $requestStream.Write($buffer, 0, $buffer.Length)
 $requestStream.Flush()
 $requestStream.Close()

 [System.Net.HttpWebResponse] $webResponse = $webRequest.GetResponse()
 $streamReader = New-Object System.IO.StreamReader($webResponse.GetResponseStream())
 $result = $streamReader.ReadToEnd()
 return $result
}

Start program
##

Try
{
 # Create IIF file
 # http://support.quickbooks.intuit.com/support/Articles/HOW12778
 # http://www.qblittlesquare.com/2011/07/import-lists-into-quickbooks-with-iif/
 # Write headers
 ('"!TRNS","DATE","ACCNT","NAME","CLASS","AMOUNT","MEMO"') >> $OutFile
 ('"!SPL","DATE","ACCNT","NAME","AMOUNT","MEMO"') >> $OutFile
 ('"!ENDTRNS"') >> $OutFile

 # We need to construct our XML request using the parameter list
 $strRequest = "<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetSalesOrdersByDateRange</service>
 <parameters>
 <startDate>$StartDate</startDate>
 <stopDate>$StopDate</stopDate>

1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

 </parameters>
 </request>"

 # Execute the API call
 $xRequest = [Xml] $strRequest
 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Write-Host "Error executing GetSalesOrders. Response: " + $xResponse.response.code + ' ' +
$xResponse.response.message
 return
 }

 [System.Xml.XmlElement]$salesOrders = $xResponse.SelectSingleNode('/response/return/salesOrders')

 $qbIIF = @()
 foreach ($salesOrder in $salesOrders.SelectNodes('salesOrder'))
 {
 # Export only completed orders
 if ($salesOrder.status -ne '4')
 {
 continue
 }

 ('"TRNS", "' + ([DateTime]$salesOrder.orderDate).ToString("yyyy-MM-dd") + '","' +
$QBBankAccount.Replace('"', '""') + '","' + $salesOrder.billingFirstName.Replace('"', '""') + ' ' +
$salesOrder.billingLastName.Replace('"', '""') + '","' + $salesOrder.totalAmount + '","SalesOrder",""') >>
$OutFile

 ('"SPL", "' + ([DateTime]$salesOrder.orderDate).ToString("yyyy-MM-dd") + '","' +
$QBIncomeAccount.Replace('"', '""') + '","' + $salesOrder.billingFirstName.Replace('"', '""') + ' ' +
$salesOrder.billingLastName.Replace('"', '""') + '","' + (-([Decimal]$salesOrder.totalAmount)) + '",""') >>
$OutFile

 ('"ENDTRNS"') >> $OutFile
 }
}
Catch
{
 Write-Output $_.Exception.Message
}

76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

101
102

103
104
105
106
107
108
109
110
111

Shipwire export order (Powershell)
The following script will export orders to Shipwire for fulfilling.

ShipwireFulfillment.ps1
#
This script will export all pending orders that needs to be fulfilled
by Shipwire.
It will mark the SalesOrderDetail object as shipped and the entire
SalesOrder as completed when every order detail has been fulfilled.
##

Configuration
##

$APIKey = '00000000-0000-0000-0000-000000000000'
$APIUrl = 'http://domain.com/DesktopModules/Revindex.Dnn.RevindexStorefront/Api/Rest/V1/ServiceHandler.ashx?
portalid=0'
$APIUsername = 'host'

Number of days to look back at orders
$BackOrderDays = -7

$LogFileName = ('Log.' + [DateTime]::Now.ToString('yyyyMMdd') + '.txt')

$NetworkTimeout = 30000

The email(s) to notify on success/error. Separated multiple emails by semicolon.
$NotificationRecipient = 'support@localhost.com'

$NotificationSender = 'support@localhost.com'

The platform or software which is referring this order.
$ShipwireReferer = ''

$ShipwirePassword = 'nokuwi'

Enter the word 'Test' if you wish to run a test but not send orders for fulfillment. Leave blank in
production.
$ShipwireTest = 'Test'

$ShipwireUsername = 'testuser'

$SMTPPassword = 'xxxxxx'
$SMTPServer = 'mail.localhost.com'
$SMTPUser = 'mailer'

The folder to store files, logs, etc. defaults to the current execution path
$WorkingFolder = ((Split-Path $MyInvocation.MyCommand.Path) + '\')

Functions
##

Function to help post HTTP request to web service
Function PostWebRequest([String] $url, [String] $data, [int] $timeout)
{
 $buffer = [System.Text.Encoding]::UTF8.GetBytes($data)
 [System.Net.HttpWebRequest] $webRequest = [System.Net.WebRequest]::Create($url)
 $webRequest.Timeout = $timeout
 $webRequest.Method = "POST"
 $webRequest.ContentType = "application/x-www-form-urlencoded"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

 $webRequest.ContentLength = $buffer.Length;

 $requestStream = $webRequest.GetRequestStream()
 $requestStream.Write($buffer, 0, $buffer.Length)
 $requestStream.Flush()
 $requestStream.Close()

 [System.Net.HttpWebResponse] $webResponse = $webRequest.GetResponse()
 $streamReader = New-Object System.IO.StreamReader($webResponse.GetResponseStream())
 $result = $streamReader.ReadToEnd()
 return $result
}

Function to send email
Function SendEmail([String]$smtpServer, [String] $smtpUser, [String] $smtpPassword, [String] $sender, [String]
$recipient, [String] $subject, [String] $body, [String] $attachment)
{
 $msg = New-Object System.Net.Mail.MailMessage
 $msg.From = $sender
 $msg.ReplyTo = $sender

 foreach ($r in $recipient.Split(';'))
 {
 if ($r)
 {
 $msg.To.Add($r)
 }
 }
 $msg.subject = $subject
 $msg.body = $body

 if ($attachment -and [System.IO.File]::Exists($attachment))
 {
 $att = New-Object System.Net.Mail.Attachment($attachment)
 $msg.Attachments.Add($att)
 }

 $smtp = New-Object System.Net.Mail.SmtpClient($smtpServer)
 $smtp.Credentials = New-Object System.Net.NetworkCredential($smtpUser, $smtpPassword);
 $smtp.Send($msg)
}

Start program
##

Try
{
$xShipRequest = [Xml] "<?xml version='1.0' encoding='utf-8'?>
<OrderList>
<Username>$ShipwireUsername</Username>
 <Password>$ShipwirePassword</Password>
 <Server>$ShipwireTest</Server>
 <Referer>$ShipwireReferer</Referer>
</OrderList>"

 # Get sales orders needing to be fulfilled
 $StartDate = [DateTime]::Now.AddDays($BackOrderDays).ToString("s")
 $StopDate = [DateTime]::Now.ToString("s")

 $xRequest = [Xml] "<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetSalesOrdersByDateRange</service>
 <parameters>
 <startDate>$StartDate</startDate>
 <stopDate>$StopDate</stopDate>
 </parameters>
 </request>"

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

 Throw New-Object System.InvalidOperationException("Error executing GetSalesOrdersByDateRange.
Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)
 }
 [System.Xml.XmlElement]$salesOrders = $xResponse.SelectSingleNode('/response/return/salesOrders')

 foreach ($salesOrder in $salesOrders.SelectNodes('salesOrder'))
 {
 # Look for pending order status
 if ($salesOrder.status -eq '1')
 {
Create Shipwire fulfillment request
$xShipRequestOrder = $xShipRequest.CreateElement('Order')
$xShipRequestOrder.SetAttribute('id', $salesOrder.salesOrderID)
$xShipRequest.OrderList.AppendChild($xShipRequestOrder)

$xShipRequestWarehouse = $xShipRequest.CreateElement('Warehouse')
$xShipRequestWarehouse.InnerText = '00'
$xShipRequestOrder.AppendChild($xShipRequestWarehouse)

$xShipRequestOrderAddressInfo = $xShipRequest.CreateElement('AddressInfo')
$xShipRequestOrderAddressInfo.SetAttribute('type', 'ship')
$xShipRequestOrder.AppendChild($xShipRequestOrderAddressInfo)

$xShipRequestOrderAddressInfoName = $xShipRequest.CreateElement('Name')
$xShipRequestOrderAddressInfoNameFull = $xShipRequest.CreateElement('Full')
$xShipRequestOrderAddressInfoNameFull.InnerText = $salesOrder.shippingFirstName + ' ' +
$salesOrder.shippingLastName
$xShipRequestOrderAddressInfoName.AppendChild($xShipRequestOrderAddressInfoNameFull)
$xShipRequestOrder.AddressInfo.AppendChild($xShipRequestOrderAddressInfoName)

$xShipRequestOrderAddressInfoAddress1 = $xShipRequest.CreateElement('Address1')
$xShipRequestOrderAddressInfoAddress1.InnerText = $salesOrder.shippingStreet.Replace("`r", '').Split("`n")[0]
$xShipRequestOrderAddressInfo.AppendChild($xShipRequestOrderAddressInfoAddress1)

$xShipRequestOrderAddressInfoAddress2 = $xShipRequest.CreateElement('Address2')
$xShipRequestOrderAddressInfoAddress2.InnerText = $salesOrder.shippingStreet.Replace("`r", '').Split("`n")[1]
$xShipRequestOrderAddressInfo.AppendChild($xShipRequestOrderAddressInfoAddress2)

$xShipRequestOrderAddressInfoCity = $xShipRequest.CreateElement('City')
$xShipRequestOrderAddressInfoCity.InnerText = $salesOrder.shippingCity
$xShipRequestOrderAddressInfo.AppendChild($xShipRequestOrderAddressInfoCity)

$xShipRequestOrderAddressInfoState = $xShipRequest.CreateElement('State')
if ($salesOrder.shippingCountryCode -eq 'US' -or $salesOrder.shippingCountryCode -eq 'CA')
{
$xShipRequestOrderAddressInfoState.InnerText = $salesOrder.shippingSubdivisionCode
}
else
{
$xShipRequestOrderAddressInfoState.InnerText = $salesOrder.shippingSubdivisionName
}
$xShipRequestOrderAddressInfo.AppendChild($xShipRequestOrderAddressInfoState)

$xShipRequestOrderAddressInfoCountry = $xShipRequest.CreateElement('Country')
$xShipRequestOrderAddressInfoCountry.InnerText = $salesOrder.shippingCountryCode
$xShipRequestOrderAddressInfo.AppendChild($xShipRequestOrderAddressInfoCountry)

$xShipRequestOrderAddressInfoZip = $xShipRequest.CreateElement('Zip')
$xShipRequestOrderAddressInfoZip.InnerText = $salesOrder.shippingPostalCode
$xShipRequestOrderAddressInfo.AppendChild($xShipRequestOrderAddressInfoZip)

$xShipRequestOrderAddressInfoPhone = $xShipRequest.CreateElement('Phone')
$xShipRequestOrderAddressInfoPhone.InnerText = $salesOrder.shippingPhone
$xShipRequestOrderAddressInfo.AppendChild($xShipRequestOrderAddressInfoPhone)

$xShipRequestOrderAddressInfoEmail = $xShipRequest.CreateElement('Email')
$xShipRequestOrderAddressInfoEmail.InnerText = $salesOrder.shippingEmail
$xShipRequestOrderAddressInfo.AppendChild($xShipRequestOrderAddressInfoEmail)

Query shipping method
 $xRequest = [Xml] ("<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetActiveShippingMethod</service>
 <parameters>
 <shippingMethodID>" + $salesOrder.shippingMethodID + "</shippingMethodID>
 </parameters>
 </request>")

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing GetActiveShippingMethod.
Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)

170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

 }
 $shippingMethod = $xResponse.response.return.shippingMethod

if (!$shippingMethod.universalServiceName.StartsWith("SHIPWIRE:"))
{
continue
}

$xShipRequestOrderCarrier = $xShipRequest.CreateElement('Carrier')
$xShipRequestOrderCarrier.InnerText = $shippingMethod.universalServiceName.Replace("SHIPWIRE:", "")
$xShipRequestOrder.AppendChild($xShipRequestOrderCarrier)

 # Query sales order details
 $xRequest = [Xml] ("<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetSalesOrderDetails</service>
 <parameters>
 <salesOrderID>" + $salesOrder.salesOrderID + "</salesOrderID>
 <stopDate>$StopDate</stopDate>
 </parameters>
 </request>")

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing GetSalesOrderDetails.
Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)
 }
 [System.Xml.XmlElement]$salesOrderDetails =
$xResponse.SelectSingleNode('/response/return/salesOrderDetails')

$itemNum = 0
 foreach ($salesOrderDetail in $salesOrderDetails.SelectNodes('salesOrderDetail'))
 {
 # Make sure we haven't already fulfilled this sales order detail otherwise we can skip it
 if ($salesOrderDetail.shippingStatus -ne '2')
 {
 continue
 }

 # Query product info for matching distributor
 $xRequest = [Xml] ("<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>GetActiveProductVariant</service>
 <parameters>
 <productVariantID>" + $salesOrderDetail.productVariantID + "
</productVariantID>
 </parameters>
 </request>")

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing GetActiveProductVariant.
Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)
 }
 $productVariant = $xResponse.response.return.productVariant

Append Shipwire item to fulfillment request
$xShipRequestOrderItem = $xShipRequest.CreateElement('Item')
$xShipRequestOrderItem.SetAttribute('num', $itemNum)
$xShipRequestOrder.AppendChild($xShipRequestOrderItem)

$xShipRequestOrderItemCode = $xShipRequest.CreateElement('Code')
$xShipRequestOrderItemCode.InnerText = $salesOrderDetail.sku
$xShipRequestOrderItem.AppendChild($xShipRequestOrderItemCode)

$xShipRequestOrderItemQuantity = $xShipRequest.CreateElement('Quantity')
$xShipRequestOrderItemQuantity.InnerText = $salesOrderDetail.quantity
$xShipRequestOrderItem.AppendChild($xShipRequestOrderItemQuantity)

$itemNum = $itemNum + 1

 # Mark SalesOrderDetail as shipped
 $salesOrderDetail.shippingStatus = '3'

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

293
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

316
317
318
319
320
321
322
323
324
325

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

 # Update order detail shipping status to shipped (3).
 $xRequest = [Xml] ("<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>UpdateSalesOrderDetail</service>
 <parameters>
 <salesOrderDetailID>" + $salesOrderDetail.salesOrderDetailID + "
</salesOrderDetailID>
 <shippingStatus>3</shippingStatus>
 </parameters>
 </request>")

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing UpdateSalesOrderDetail.
Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)
 }
 }

 # Update order status to Completed and Shipped if all sales order details have been accounted for.
 $orderIsComplete = $true
 foreach ($salesOrderDetail in $salesOrderDetails.SelectNodes('salesOrderDetail'))
 {
 if ($salesOrderDetail.shippingStatus -eq '2' -or $salesOrderDetail.shippingStatus -eq '4')
 {
 $orderIsComplete = $false
 break
 }
 }

 if ($orderIsComplete)
 {
 # Update order status to shipped (3) and order completed (4).
 $xRequest = [Xml] ("<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>UpdateSalesOrder</service>
 <parameters>
 <salesOrderID>" + $salesOrder.salesOrderID + "</salesOrderID>
 <salesPaymentStatus>" + $salesOrder.salesPaymentStatus + "
</salesPaymentStatus>
 <shippingStatus>3</shippingStatus>
 <status>4</status>
 </parameters>
 </request>")

 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 Throw New-Object System.InvalidOperationException("Error executing UpdateSalesOrder.
Response: " + $xResponse.response.code + ' ' + $xResponse.response.message)
 }
 }
 }
 }

Submit to Shipwire fulfillment
$shipwireAPIUrl = 'https://api.shipwire.com/exec/FulfillmentServices.php'
if ($ShipwireTest -ne '')
{
$shipwireAPIUrl = 'https://api.beta.shipwire.com/exec/FulfillmentServices.php'
}
[Xml]$xResponse = PostWebRequest $shipwireAPIUrl $xShipRequest.InnerXml $NetworkTimeout
[System.Xml.XmlElement]$xSubmitOrderResponse = $xResponse.SelectSingleNode('/SubmitOrderResponse')
 if ($xSubmitOrderResponse.Status -eq '0')
 {
 # Log completion
 ([DateTime]::Now.ToString("s") + "`tSuccess`t" + $xShipRequest.InnerXml) >> ($WorkingFolder + $LogFileName)

Notify progress
 SendEmail $SMTPServer $SMTPUser $SMTPPassword $NotificationSender $NotificationRecipient 'Fulfillment
completed successfully' 'Fulfillment completed successfully' ($WorkingFolder + $LogFileName)
 }
 else
{
 # Log completion
 ([DateTime]::Now.ToString("s") + "`t" + $xSubmitOrderResponse.ErrorMessage.InnerText + "`t" +
$xShipRequest.InnerXml) >> ($WorkingFolder + $LogFileName)

Notify progress
 SendEmail $SMTPServer $SMTPUser $SMTPPassword $NotificationSender $NotificationRecipient 'Fulfillment
failed' 'Fulfillment failed' ($WorkingFolder + $LogFileName)

347
348
349
350
351
352
353
354
355
356
357

358
359
360
361
362
363
364
365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

394
395
396
397
398
399
400
401
402

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

424
425
426
427
428

429
430
431

 }
}
Catch
{
 # Log errors
 ([DateTime]::Now.ToString("s") + "`t" + $_.Exception.Message + "`t") >> ($WorkingFolder + $LogFileName)

 # Notify error
 SendEmail $SMTPServer $SMTPUser $SMTPPassword $NotificationSender $NotificationRecipient 'Fulfillment
failed' 'Fulfillment failed' ($WorkingFolder + $LogFileName)
}

432
433
434
435
436
437
438
439
440

441
442

Retrieve product (C#)
The following code shows how to perform a simple POST request using C# to retrieve a Product object:

using System;
using System.IO;
using System.Net;
using System.Text;
using System.Xml;
using System.Xml.Ling;
...
...
...

HttpWebRequest req = (HttpWebRequest)WebRequest.Create("http://a.com/.../Api/Rest/V1/ServiceHandler.ashx");

req.Timeout = 30000;
req.Method = "POST";
req.ContentType = "application/x-www-form-urlencoded";

// Initialize post string
string postString = @"<?xml version=""1.0"" encoding=""utf-8""?>
<request>
 <version>1.0</version>
 <credential>
 <username>Administrator</username>
 <apiKey>00000000-0000-0000-0000-000000000000</apiKey>
 </credential>
 <service>GetActiveProduct</service>
 <parameters>
 <productID>1</productID>
 </parameters>
</request>";

req.ContentLength = Encoding.UTF8.GetByteCount(postString);
using (Stream sw = req.GetRequestStream())
{
 byte[] bytes = Encoding.UTF8.GetBytes(postString);
 sw.Write(bytes, 0, bytes.Length);
}

HttpWebResponse resp = (HttpWebResponse)req.GetResponse();

// Verify HTTP for 200 OK status code
if (resp.StatusCode == HttpStatusCode.OK)
{
 using (StreamReader sr = new StreamReader(resp.GetResponseStream(), Encoding.UTF8))
 {
 string responseData = sr.ReadToEnd();

 // Parse the XML return data
 XDocument doc = XDocument.Parse(responseData);

 // Verify XML for 2000 Success
 if (((XElement)doc.FirstNode).Element("code").Value == "2000")
 {
 // Read the rest of the XML...
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

CSV bulk import

This feature is not supported by Revindex. It's only provided as an example to demonstrate what you can do with the
REST API in combination with other tools.

Revindex Storefront spots a powerful REST API for selecting, inserting, updating or deleting almost any data. The REST
API has a more extensive support for manipulating bulk data than the regular CSV import on the screen. Please
see Import and Export (http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-and-
export/rvdwkpvm/section) for more information.

However, because the REST API operates on XML or JSON and is intended for programmers, it's not easy to manipulate
the data by non-technical users. An easier way is to allow users to manipulate the data from a CSV (Excel spreadsheet)
and make use of other tools to transform the CSV into XML for the REST API.

You can use a Powershell script to take a CSV file and convert it to XML suitable for the REST API to work. The command line

can be run from any computer or scheduled to import the CSV file. Since internally it uses the REST API, it could call any Insert,

Update or Delete operations that the REST API can perform. Because internally it calls the REST API, it benefits from validation

check as well as the ability to operate on almost every field.

CsvImport.ps1 v1.0.0
#
This script will bulk execute any API service you specify (insert, update and delete operations)
using parameters and repeating for every record in your CSV file.
The CSV file must include first line headers matching exactly the parameter list for the requested service.
Remember to take a full backup of your system before performing any API operation.
#
Example 1. To bulk execute the "InsertProductAttribute" API service, you need to provide a parameter CSV file
like this (ideally with quotes):
#

"booleanValue","decimalValue","integerValue","productAttributeDefinitionID","productID","productVariantID","se
lectionValue","stringValue"
"TRUE","[NULL]","[NULL]","12","7","[NULL]","[NULL]","[NULL]"
"[NULL]","[NULL]","[NULL]","15","[NULL]","8","[NULL]","[NULL]"
#
Then run the command line below to execute the API service for each record in your CSV file:
#
> &"C:\CsvImport.ps1"
-APIKey 'xxxx' -APIService 'InsertProductAttribute' -APIUrl 'http://url/...'
-APIUsername 'admin' -ParamsFile 'C:\Params.csv'
#
##

Configuration
##

param
(
 [parameter(Mandatory = $true)][string]$APIKey,
 [parameter(Mandatory = $true)][string]$APIService,
 [parameter(Mandatory = $true)][string]$APIUrl,
 [parameter(Mandatory = $true)][string]$APIUsername,
 [bool]$ExitOnError = $true,
 [parameter(Mandatory = $true, ValueFromPipeline = $true, ValueFromPipelineByPropertyName = $true)]
[string]$ParamsFile,
 [int]$NetworkTimeout = 30000,
 [string]$NullString = "[NULL]",
 [bool]$Silent = $false
)

Functions
##

Function to help post HTTP request to web service
Function PostWebRequest([String] $url, [String] $data, [int] $timeout)

1
2
3
4
5
6
7
8

9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/import-and-export/rvdwkpvm/section

{
 $buffer = [System.Text.Encoding]::UTF8.GetBytes($data)
 [System.Net.HttpWebRequest] $webRequest = [System.Net.WebRequest]::Create($url)
 $webRequest.Timeout = $timeout
 $webRequest.Method = "POST"
 $webRequest.ContentType = "application/x-www-form-urlencoded"
 $webRequest.ContentLength = $buffer.Length;

 $requestStream = $webRequest.GetRequestStream()
 $requestStream.Write($buffer, 0, $buffer.Length)
 $requestStream.Flush()
 $requestStream.Close()

 [System.Net.HttpWebResponse] $webResponse = $webRequest.GetResponse()
 $streamReader = New-Object System.IO.StreamReader($webResponse.GetResponseStream())
 $result = $streamReader.ReadToEnd()
 return $result
}

Function to send email
Function SendEmail([String]$smtpServer, [String] $smtpUser, [String] $smtpPassword, [String] $sender, [String]
$recipient, [String] $subject, [String] $body, [String] $attachment)
{
 $msg = New-Object System.Net.Mail.MailMessage
 $msg.From = $sender
 $msg.ReplyTo = $sender

 foreach ($r in $recipient.Split(';'))
 {
 if ($r)
 {
 $msg.To.Add($r)
 }
 }
 $msg.subject = $subject
 $msg.body = $body

 if ($attachment -and [System.IO.File]::Exists($attachment))
 {
 $att = New-Object System.Net.Mail.Attachment($attachment)
 $msg.Attachments.Add($att)
 }

 $smtp = New-Object System.Net.Mail.SmtpClient($smtpServer)
 $smtp.Credentials = New-Object System.Net.NetworkCredential($smtpUser, $smtpPassword);
 $smtp.Send($msg)
}

Start program
##

Try
{
 # Load CSV parameters from file into memory
 if (![System.IO.File]::Exists($ParamsFile))
 {
 return
 }

 $ImportData = @(Import-Csv ($ParamsFile))

 # Get list of parameter names from our CSV header line
 $ImportHeaders = $ImportData | Get-Member -MemberType NoteProperty | foreach {$_.name}

 # Execute API service for each parameter record in CSV file
 $line = 0
 $successCount = 0
 foreach ($Row in $ImportData)
 {
 Try
 {
 $line++

 # We need to construct our XML request using the parameter list
 $strRequest = "<?xml version='1.0' encoding='utf-8'?>
 <request>
 <version>1.0</version>
 <credential>
 <username>$APIUsername</username>
 <apiKey>$APIKey</apiKey>
 </credential>
 <service>$APIService</service>
 <parameters>
 "

 foreach ($Param in $ImportHeaders)
 {
 $v = $Row | Select –ExpandProperty $Param

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

For example, it can call the "InsertProductAttribute" service. Please see ProductAttribute
(http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/rest-api-productattribute/rvdwkpvm/section) for
more information. All you need to do is make sure your CSV file header follows the request parameter list of that service
call (double quotes around CSV fields are optional but highly recommended).

You just need to enable the API under Configuration > API menu after logged in as Admin or Host. Then run the
command line with the correct parameters specifying the operation you want to do and the location of your CSV file:

 if ($v -ne $NullString)
 {
 if ($v.StartsWith('<locale ') -or $v.StartsWith('<code ') -or $v.StartsWith('<rule '))
 {
 $strRequest += " <$Param>" + $v + "</$Param>`r`n"
 }
 else
 {
 $strRequest += " <$Param>" + [System.Web.HttpUtility]::HtmlEncode($v) + "
</$Param>`r`n"
 }
 }
 }

 $strRequest += " </parameters>
 </request>"

 # Execute the API call
 $xRequest = [Xml] $strRequest
 [Xml]$xResponse = PostWebRequest $APIUrl $xRequest.InnerXml $NetworkTimeout
 if ($xResponse.response.code -ne '2000')
 {
 if (!$Silent)
 {
 Write-Host "Error executing $APIService while processing record number $line. Response: " +
$xResponse.response.code + ' ' + $xResponse.response.message
 }

 if ($ExitOnError)
 {
 return
 }
 }
 else
 {
 $successCount++
 }

 if (!$Silent)
 {
 Write-Host "$successCount / $line records successfully executed."
 }
 }
 Catch
 {
 if (!$Silent)
 {
 Write-Host "Error executing $APIService while processing record number $line. " +
$_.Exception.Message
 }

 if ($ExitOnError)
 {
 return
 }
 }
 }
}
Catch
{
 if (!$Silent)
 {
 Write-Host $_.Exception.Message
 }
}

"booleanValue","decimalValue","integerValue","productAttributeDefinitionID","productID","productVariantID",...
"TRUE","[NULL]","[NULL]","12","7","[NULL]",...
"[NULL]","[NULL]","[NULL]","15","[NULL]","8",...

136
137
138
139
140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

1
2
3
4
5

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/rest-api-productattribute/rvdwkpvm/section

Remember to take a full backup before doing any major import.

&"C:\CsvImport.ps1" -APIKey 'xxxx' -APIService 'InsertProductAttribute' -APIUrl 'http://url/...' -APIUsername 'admin' -
ParamsFile 'C:\Params.csv'

1
2

3

XML and XSL
Revindex Storefront uses XML and XSLT rules to carry data and to transform it into usable business logic. Both technology
are well defined and governed by the W3C standard.

There are numerous tutorials and books that teaches about XML and XSLT. Below are a few online tutorials that could be
useful.

XML Tutorials

http://www.w3schools.com/xml/ (http://www.w3schools.com/xml/)

http://www.xmlfiles.com/xml/ (http://www.xmlfiles.com/xml/)

http://www.quackit.com/xml/tutorial/ (http://www.quackit.com/xml/tutorial/)

XSLT Tutorials

http://www.w3schools.com/xsl/ (http://www.w3schools.com/xsl/)

http://www.tizag.com/xmlTutorial/xslttutorial.php (http://www.tizag.com/xmlTutorial/xslttutorial.php)

http://www.learn-xslt-tutorial.com/ (http://www.learn-xslt-tutorial.com/%20)

http://www.w3schools.com/xml/
http://www.xmlfiles.com/xml/
http://www.quackit.com/xml/tutorial/
http://www.w3schools.com/xsl/
http://www.tizag.com/xmlTutorial/xslttutorial.php
http://www.learn-xslt-tutorial.com/%20

XSL Transform
Every business has its own set of unique business rules, which gives its competitive edge and allows it to comply with
regulations. For example, you may have a business rule that gives a $10 discount to repeat customers who purchased
over $50 worth of products or your ground shipping method in the United States should never ship to Hawaii.

Revindex Storefront employs powerful XSL 2.0 transform to apply dynamic business rules and calculate the resulting
values. XSL (Extensible Stylesheet Language) is the industry standard XML transform language and can be found in
different DNN core modules such as the Reports, XML, News Feed module and throughout the Internet. Although not
necessary to operate the Revindex Storefront, understanding the basics of XSL will
open endless possibility to describe your most complicated business rules needed to run your business.

To learn XSL, you must first understand XML (Extensible Markup Language). XML is very similar to HTML, the language
used to describe Web pages. XML is made up of elements contained in open and close right-angle brackets. e.g. <element
attribute="Some value">My value</element>

Computer is able to interpret the tags into useful value. XML language has a few simple rules:

1. XML is case-sensitive.

2. All elements must be properly closed.
e.g. <myTag>1.00</myTag> or use the short form <myTag /> if no value is enclosed.

3. All elements must be properly nested.
e.g. <a>1.00 is correct. <a>1.00 is wrong.

4. Comments use the special open and close tags and are ignored by the computer.
e.g. <!-- this is some comment -->

5. Reserved characters must be encoded when used as value.
e.g. <myTag>John & Jane</myTag>

Reserved Characters Encoded Characters

< <

> >

& &

' '

" "

The structure of XSL looks like XML. It uses open and close right-angle brackets and follows the same syntax as XML. In
addition, it has built-in special purpose elements and functions that can manipulate XML data. The following example
shows a sample XML input with a $75 sales order. The XSL business rule has an “if” condition that prints the $10 discount
if the amount is greater than $50.

To write XSL, start with how you expect the XML output to be. In the previous example, you would write the <out> and
<discountAmount> open and close tags as you see them. Add to the header and footer the standard <xsl:transform> and
<xsl:template> open and close tags respectively. These tags tell the computer that you're writing XSL and match up with
start of the XML input data. Finally, add the <xsl:if> condition and check for the $50 amount. Here, the
"in/salesOrder/amount" is used to navigate and select the XML input data.

The common XSL special purpose elements for transforming XML data are listed below.

XSL Elements Description

<xsl:variable name="varname"
select="expression" />

Hold the value of an expression in a variable that can be referenced later
using $varname.

<xsl:value-of select="expression" /> Used to select and print a value from XML input.

<xsl:if
test="expression">value</xsl:if>

Only print the value if condition succeeds.

<xsl:choose>
 <xsl:when
test="expression">value</xsl:when>
 <xsl:when
test="expression">value</xsl:when>
 <xsl:when
test="expression">value</xsl:when>

<xsl:otherwise>value</xsl:otherwise>
</xsl:choose>

Print first value if condition succeeds, otherwise print next value. Unlike the
xsl:if instruction, the xsl:choose instruction allows for one or multiple xsl:when
test conditions. The result of the first test condition that succeeds will returned.
If no test condition succeeds, the last optional xsl:otherwise result is returned.

<xsl:for-each
select="expression">value</xsl:for-
each>

Loop each occurrence of the expression and print the value.

The XSL expressions can contain these operators.

XSL Operators Description Example Result

+ Addition. 1 + 2 3

- Subtraction. 3 - 1 2

* Multiplication. 2 * 6 12

div Division. 6 div 2 3

= Test for equality. amount = 1.00
True if amount is 1.00
False if amount is 1.10

!= Test for not equal. amount != 1.10
True if amount is 1.00
False if amount is 1.10

< Less than. amount < 1.10
True if amount is 1.00
False if amount is 1.10

<= Less than or equal. amount <= 1.00
True if amount is 1.00
False if amount is 1.10

> Greater than. amount > 1.00
True if amount is 1.10
False if amount is 1.00

>= Greater than or equal. amount >= 1.00
True if amount is 1.00
False if amount is 0.90

or Conditional or. amount = 1.00 or amount = 1.10
True if amount is 1.00
False if amount is 1.20

and Conditional and. amount > 1.00 and amount < 1.10
True if amount is 1.05
False if amount is 0.90

XSL also provides hundreds of functions to manipulate data, such as rounding a decimal number, etc. The common
functions are listed below. To see a full list of functions, please see https://www.w3schools.com/xml/xsl_functions.asp
(https://www.w3schools.com/xml/xsl_functions.asp)

XSL Functions Description

ceiling(num) Returns the smallest integer number that is greater than the number argument.

https://www.w3schools.com/xml/xsl_functions.asp

floor(num) Returns the largest integer number that is smaller than the number argument.

round(num) Round the number argument to the nearest integer number.

concat(string,
string, ..., sep)

Returns a string by concatenating with the separator argument.

substring(string,
start, length)

Returns the sub-string from the start position to the specified length. Index of the first character is
1. If length is omitted it returns the substring from the start position to the end.

string-
length(string)

Returns the length of the string argument.

upper-
case(string)

Returns the string in all upper case.

lower-
case(string)

Returns the string in all lower case.

contains(string1,
string1)

Returns true if string1 contains string2, otherwise false.

starts-
with(string1,
string2)

Returns true if string1 starts with string2, otherwise false.

ends-
with(string1,
string2)

Returns true if string1 ends with string2, otherwise false.

matches(string,
pattern)

Returns true if the string argument matches the pattern, otherwise false.

replace(string,
pattern, replace)

Returns a string that is created by replacing the given pattern with the replace argument.

not(arg) Returns true if the boolean value is false, and false if the boolean value is true.

count((item,
item, ...))

Returns the count of nodes.

avg((arg,
arg,...))

Returns the average of the argument values.

max((arg,
arg,...))

Returns the argument that is greater than the others.

min((arg, arg,
...))

Returns the argument that is less than the others.

sum(arg, arg,
...)

Returns the sum of the numeric value of each node in the specified node-set.

To learn more about XML, please see http://www.w3schools.com/xml/default.asp
(http://www.w3schools.com/xml/default.asp) and to learn more about XSL, please see http://www.w3schools.com/xsl/
(http://www.w3schools.com/xsl/). You'll also find more help and example of XSL in the Revindex Forum and Support
pages.

http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/xsl/

XSL Tokens
Rich text editors are useful for designing static HTML content, however, it lacks the ability to inject data
dynamically. Revindex Storefront supports XSL tokens to replace values and provide powerful logic manipulation in
specially indicated rich text editors. XSL tokens makes it possible to inject a single line of dynamic data like name, or an
entire table of data such as order details.

Simply, XSL tokens are actual XSL statements wrapped in specially enclosed single braces {xsl:value-of /} instead of the
usual right angles <xsl:value-of />. For example, the familiar XSL statement:

<xsl:value-of select="in/salesOrder/billingFirstName" />

can be tokenized and safe for use in rich text editors by replacing the right angles with double brackets:

{xsl:value-of select="in/salesOrder/billingFirstName" /}

This allows the rich text editor such as the email template editor or the report visualizer editor to render an editable HTML
representation of your design while allowing XSL syntax to seemingly and safely co-exist with your HTML code.

Please note in previous Storefront 10 and older uses a double brackets [[xsl:value-of /]] instead of single braces.

Debugging XSL
You can debug XSL transforms by enabling "Debug" mode. Once enabled, the Storefront will start recording the XML input
in the DNN's Event Viewer. Please see Log Level (http://www.revindex.com/Resources/Knowledge-Base/Revindex-
Storefront/log-level/rvdwkpvm/section) for more information on how to enable debug mode.

http://www.revindex.com/Resources/Knowledge-Base/Revindex-Storefront/log-level/rvdwkpvm/section

String Tokens
Tokens are simple text replacement allowing you to dynamically display additional content in many text or HTML areas. For
example, you can use the token "[User:DisplayName]" to personalize the product page by displaying the current user's
name or simply showing the date and time using the "[Date:Now]" token. You can even format the returned value by piping
the value to a string formatter like "[User:Displayname|Hello {0}]" or "[Date:Now|dd.MM.yyyy]".

By default, the Storefront supports many default DNN standard tokens (http://www.revindex.com/Resources/Knowledge-
Base/Standard-DNN-Tokens). In addition, if available, the Storefront can use DNNSharp MyTokens
(http://www.dnnsharp.com/dnn/modules/my-custom-tokens) to create very powerful conditional tokens that can query deep
information within your database and elsewhere.

Revindex Storefront supports token replacement within HTML content for several key places such as product, category,
manufacturer and distributor descriptions, as well as within communication templates. To use token replacement, you must
enable the Replace tokens feature under Configuration > General settings first.

http://www.revindex.com/Resources/Knowledge-Base/Standard-DNN-Tokens
http://www.dnnsharp.com/dnn/modules/my-custom-tokens

Lookup Values
For performance reasons, Revindex Storefront occasionally uses alternate lookup values internally to represent statuses,
country or subdivision codes. Certain lookup values are also ISO compliant and is internationally recognized for
compatibility.

Country and subdivision codes
The Storefront follows the official ISO-3166-1 Alpha 2 code for all country code references (e.g. "US" for United States)
and follows the ISO-3166-2 code for the respective subdivisions (e.g. "US-CA" for California). Please consult the official
ISO list (https://www.iso.org/obp/ui/#search/code/) to look up country and subdivisions.

https://www.iso.org/obp/ui/#search/code/

Inventory unit types

Name Value

Constant 1

Year 2

Month 3

Week 4

Day 5

Hour 6

Package Types

Name Value

Bag 3000

Box 2000

Envelope 1000

Pallet 5000

Tube 4000

Unspecified 1

Payment Gateway Response Code Types

Name Value

Approved 1

Declined 100

Gateway Error 200

Network Error 300

Payment Method Types

Name Value

Authorize.Net CIM 18

Authorize.Net SIM 13

Cash 1

Check 2

Credit Card 3

MasterCard IGS Hosted 14

Mollie 11

Money Order 4

None 7

PayFast 8

PayPal 6

Paystation 3 Party 15

Rewards Points 16

Sage Pay Form 17

Suomen Verkkomaksut 12

Towah 9

Voucher 10

Wire Transfer 5

Payment origin types

Value

Checkout 1

ManageOrder 2

Storefront 3

Recurring 4

Recurring Interval Types

Name Value

Day 1

Week 2

Month 3

Year 4

Recurring Sales Order Status Types

Name Value

Active 1

Hold 2

Invalid 3

Cancelled 4

Rewards points operation types

Name Value

Usage 1

AdminModified 2

Issuance 3

Award 4

Rewards points status types

Name Value

Inactive 1

Active 2

Hold 3

Cancelled 4

Sales order detail status types

Name Value

Pending 1

Ordered 2

Processing 3

Completed 4

Quoted 9

Sales Order Origin Types

Name Value

Checkout 1

Storefront 3

Recurring 2

Sales Types

Name Value

Sale 1

Quote 2

Sales Order Status Types

Name Value

Pending 1

Ordered 2

Processing 3

Completed 4

Cancelled 5

Declined 6

Incomplete 7

Preordered 8

Quoted 9

Sales Payment Status Types

Name Value

Pending 1

Paid 2

Cancelled 3

Refunded 4

Declined 5

Incomplete 6

Sales Payment Transaction Types

Name Value

Authorize 1

Purchase 2

Void 3

Refund 4

Invoice 5

Capture 6

Shipping Status Types

Name Value

Not Required 1

Not Shipped 2

Packing 5

Packed 6

Dispatching 7

Shipped 3

Undeliverable 4

Voucher Interval Types

Name Value

Day 1

Week 2

Month 3

Year 4

Voucher Status Types

Name Value

Inactive 1

Active 2

Hold 3

Cancelled 4

PCI Compliance
Your customer personal information is important to us. Revindex Storefront is built with security in mind from the ground up
and complies with all PCI requirements.

The Payment Card Industry Data Security Standard (http://www.pcisecuritystandards.org) (PCI DSS) governs how
companies should process, store and transmit credit card information in a secure environment. Revindex Storefront
complies with all PCI requirements including:

Credit card information is never stored unless you configure it to store or you sell recurring products.

Credit card encryption using AES 256-bit military strength cryptography.

Encryption key can be changed once a year or anytime.

Credit card verification numbers (CVV, CID, CVD) are never stored.

Support for SSL (HTTPS) transactions.

Validate against SQL injection and other cross site scripting attacks

Voucher codes are encrypted in the database.

http://www.pcisecuritystandards.org/

